Towards Improving Solution Dominance with
Incomparability Conditions:
A case-study using Generator Itemset Mining

Gokberk Kocak!, Ozgiir Akgiin®, Tias Guns?, Ian Miguel®

1 School of Computer Science, University of St Andrews, UK
{gk34 ,ozgur.akgun, i jm}@st—andrews .ac.uk
2 Vrije Universiteit Brussel
Tias.Guns@vub.be

Abstract. Finding interesting patterns is a challenging task in data mining. Con-
straint based mining is a well-known approach to this, and one for which con-
straint programming has been shown to be a well-suited and generic framework.
Dominance programming has been proposed as an extension that can capture an
even wider class of constraint-based mining problems, by allowing to compare
relations between patterns. In this paper, in addition to specifying a dominance
relation, we introduce the ability to specify an incomparability condition. Using
these two concepts we devise a generic framework that can do a batch-wise search
that avoids checking incomparable solutions. We extend the ESSENCE language
and underlying modelling pipeline to support this. We use generator itemset min-
ing problem as a test case and give a declarative specification for that. We also
present preliminary experimental results on this specific problem class with a CP
solver backend to show that using the incomparability condition during search
can improve the efficiency of dominance programming and reduces the need for
post-processing to filter dominated solutions.

Keywords: Constraint Programming - Constraint Modelling - Data Mining -
Itemset Mining - Pattern Mining - Dominance Programming

1 Introduction

Pattern Mining is the process of finding interesting patterns in large data-sets. Com-
mon pattern mining tasks include problems like the well known problem of frequent
itemset mining (FIM) (sets of items that occur together frequently) from transactional
databases. Standard pattern mining tasks that require enumerating all frequent itemsets
are best performed using specialised tools and algorithms [1,26,16]. However, a com-
plete enumeration of all frequent itemsets is rarely what a practitioner needs, since the
number of all frequent itemsets can be very large. The main goal of pattern mining is
to find a smaller number of interesting patterns for further analysis. Domain-specific
side constraints [6] and methods for compactly representing the outcome of a particular
pattern mining task [23,24,25] have been proposed to increase the utility of constraint-
based pattern mining. While these methods allow us to focus on interesting patterns,

2 G Kocak et al.

and represent solution sets compactly, they also result in a significantly more difficult
data mining task.

Constraint Programming (CP) is a general purpose method for specifying decision
problems in a declarative language and finding solutions to these problems using highly
efficient black-box solvers. Recent work demonstrates the utility of CP for performing
constraint-based data mining tasks [11,14,13]. The main advantage of these methods is
their generic nature and hence flexibility: once a CP model is developed for a certain
pattern mining task this model can be extended with additional side constraints easily.
This contrasts with specialised algorithms, where incorporating domain knowledge is
often difficult, side constraints often help a black-box constraint solver. An example
of a generic CP-based language and framework for pattern mining is MiningZinc [14],
which was built on top of MiniZinc to allow the easy specification of data mining prob-
lems in a CP modelling environment.

While many constraints can be expressed as standard constraints, a number of tasks
do not allow the addition of arbitrary side constraints. The most well-known example is
closed frequent itemset mining with side constraints that are not monotone (for example
a maximum size constraint) [6]. Enforcing the general property of closedness/maximal-
ity for frequent itemset mining can be solved by adding constraints among solutions. In
a closed frequent itemset mining (CFIM) task, a frequent itemset is only a solution if its
support is greater than all of its supersets. Constraint Dominance Programming (CDP)
has been suggested as a way of formulating such properties in a general way [19,15].
A CDP model specifies, in addition to the main model where the decision variables and
constraints relating to a single solution are declared in the usual way, constraints among
solutions using dominance-nogoods. The operational semantics of dominance-nogoods
corresponds to adding a new blocking constraint after each solution. This way, potential
solutions that are dominated by a previously found solution are blocked. Following this
semantics, CDP always finds all non-dominated solutions; however, without a perfect
search ordering it is likely to find a number of dominated solutions as well. Dominated
solutions can then be removed using a post-processing step [19].

In this paper, we add the necessary language and search capabilities described by
Guns et al. [15] to ESSENCE. Furthermore, we propose an extension to CDP with an
incomparability condition between solutions. In addition to specifying the dominance
relation between solutions, we also specify the condition which makes the solutions
incomparable. Hence, in an enumaration task using the incomparability condition sys-
tem can enumarate all the solutions that are incomparable to each other in one solver
call and add the blocking no-goods later. This abstracts the idea of level-wise search
for common pattern mining [10,5] in CP. Level-wise search in pattern mining using CP
was previously explored in [17]. Using dominance programming logic demonstrates
the abstraction of level-wise search more clearly and supports the application of in-
comparability as an extension to dominance programming without enforcing level-wise
search.

Contributions. We extend ESSENCE to support CDP. We define and implement in-
comparability as an enhancement to pure-CDP (our version referred to as CDP+I in the
rest of the paper). It addresses the main bottleneck of dominance programming: CDP+I
often generates many fewer blocking constraints, it allows the natural specification of

Improving Solution Dominance with Incomparability Conditions 3

Start

Find 1 solution

¥

nO
lyes

Post blocking constraints

Fig. 1: Flowchart for Constraint Dominance Programming (CDP)

the search order, and it can eliminate the post-processing step that is often required to
filter dominated solutions.

2 Constraint Dominance Programming

A constraint dominance problem is a constraint satisfaction problem extended with
dominance nogoods [15]. A dominance nogood is a blocking constraint that can be
generated from an existing solution, and is used to prune all solutions dominated by the
solution at hand.

When solving a constraint dominance problem, the goal is to enumerate all non-
dominated solutions. Operationally this is achieved by finding a solution .S, posting
blocking constraints to disallow solutions dominated by S, and using the modified
model to find the next solution. This process creates as many dominance blocking con-
straints as there are solutions. Moreover, without a perfect search order, it may produce
dominated solutions in addition to all the non-dominated solutions. A post-processing
step is needed to remove some dominated solutions which can be found in the interme-
diate solver calls. Thus, it requires calling the low-level solver at least n + 1 times for
n solutions. Figure 1 gives a flowchart for CDP.

To understand the dominance problem a simple example can be given. If we look
at Equation (1), the dominance condition indicates that the future possible solutions
shouldn’t be a subset of any found solution. After finding one of the solutions, let’s say
{1,2}, {1}, {2} are blocked to be found later on. Respectively, {1, 3} will block only
{3} since {1} is already blocked.

Example Solutions = {1, 2}, {1, 3}
Dominance Condition = ASfyture VS | Sfruture € S €))
Dominated Solutions = {1}, {2}, {3}

Pure CDP has a number of shortcomings in the context of constraint based mining.

4 G Kocak et al.

Start

nO

Encode incomparability level

|

Find all solutions

|

Add blocking constraints

yes

Fig. 2: Flowchart for CDP enhanced with Incomparability (CDP+I)

— When the number of solutions is large, CDP’s requirement of calling the solvers
once for solution creates an overhead, as it incrementally adds a new dominance
blocking constraint after each solution. This creates an unnecessary overhead, and
in addition it reduces the utility of learned clauses in a learning solver. It might also
evaluate the same sub-trees of searches multiple times, since this information is lost
at the end of solver call.

— Without a good search ordering, CDP might enumerate dominated solutions as
well. The number of dominated solutions is typically orders of magnitude greater
than of non-dominated solutions.

— Post-processing is required to remove dominated solutions found during search.

We observe that a significant number of pairs of solutions A and B in the solution
set of a CDP tend to be incomparable to each other. Two solutions A and B are incom-
parable if neither A dominates be, nor B dominates A. For these pairs of solutions, the
dominance blocking constraint generated from either solution is irrelevant when search-
ing for the other solution. In the next section we present an explicit way of capturing
such conditions declaratively in a new incomparability function statement.

2.1 Incomparability in Constraint Dominance Programming

We define a new type of statement to specify incomparable solutions explicitly. This
statement is only allowed in a CDP problem specification, i.e. a problem specifica-
tion which contains a dominance relation statement. The dominance relation statement
defines the dominance relation itself, similarly to the dominance nogoods introduced
in [15]. The incomparability function statement provides a function (/) mapping any
solution to a single value that has an ordered ESSENCE type (typically an integer).

Improving Solution Dominance with Incomparability Conditions 5

Two solutions A and B with I(A) = I(B) are said to be incomparable, i.e. neither
A dominates B, nor B dominates A. The addition to the previous example we looked
at Equation (1) would be |S|. Any found solution set S; do not dominate any other so-
lution Sy with the same cardinality (]S1| = |S2) within the given subset relation. Same
situation applies the other way around; S5 do not dominate .S;. The incomparability
function partitions the search space. Since we enumerate all solutions for each part of
the partition, it is necessarily sound in not losing non-dominated solutions.

Operationally we make use of this explicit incomparability statement by enumerat-
ing all solutions that have an equal incomparability function value. This avoids the need
to add any blocking constraints after each solution that has the same incomparability
value. Then, all of the necessary blocking constraints are added at once before mov-
ing to the next incomparability level. This reduces the number of solver calls required,
reduces the total number of dominance blocking constraints maintained, and allows
the use of efficient solution-enumeration solvers. In addition, thanks to the explicit
search order specified in the incomparability function statement the proposed system
will produce fewer (or in the best case none) dominated solutions. CDP enhanced with
an explicit incomparability statement (CDP+I) is implemented in CONJURE [2,3,4] and
SAVILE Row [22]; Figure 2 gives a flowchart for CDP+1.

3 Architecture in CONJURE and SAVILE ROwW

ESSENCE is a high-level constraint modelling languages that natively supports set,
multi-set, sequence, function, relation domain constructors and domains that are made
of these domain constructors in an arbitrarily nested manner [12]. The pattern min-
ing models listed in this paper make use of set, sequence, and multi-set domains to
represent the frequent itemset decision variables and the transaction databases them-
selves. Operators such as subsetEq and quantification over decision variables with
set domains are used to specify the models succinctly and abstractly. CONJURE is then
used to generate concrete constraint programming models in the lower-level ESSENCE
PRIME language. During this step, CONJURE can generate several alternative models
since there are multiple representation options for set, multi-set and sequence decision
variables and parameters. In this paper we do not compare different reformulations,
instead we rely on the built-in heuristics of CONJURE to produce a reasonable model.

ESSENCE PRIME is a solver-independent constraint modelling language that is com-
parable in terms of features to the MiniZinc language [20]. It offers Boolean, integer
and matrix decision variables, a rich collection of operators that work on these types,
and a number of global constraints. SAVILE ROW is able to target several backend
solvers. We experiment with a CP backend (MINION) and a SAT backend of SAVILE
ROW in this paper. We extend ESSENCE PRIME to represent SAVILE ROW to handle
both dominance relation and incomparability function statements.

SAVILE ROW is an optimising constraint modelling assistant [22]. Among others, it
performs common subexpression elimination (CSE) and dynamic probing for domain
pruning. These modelling optimisations help all configurations of our computational
experiments presented in this paper. Specifically for the domain pruning optimisation
SAVILE ROW calls MINION in a special mode to only perform singleton arc consis-

6 G Kocak et al.

tency on the bounds of the variables (SACBounds [21]) and return potentailly reduced
domains. This optimisation allows us to reduce the number of incomparability levels
completely automatically. During SACBounds reasoning, if there are no frequent item-
sets with cardinality above a certain value, the corresponding domain is pruned accord-
ingly. This can result in entire incomparability levels not having to be instantiated.

When targeting MINION, SAVILE ROW is used to produce an input file using the
standard pipeline. Then, a collection of constraints are added to enforce a level as de-
duced from the incomparability function statement. These constraints are added in a
way that would allow their easy removal from the MINTON input file. Once all solutions
are enumerated for a certain incomparability level; the previous level constraints are
removed, all dominance blocking constraints are added at once, and the next level con-
straints are added. The dominance blocking constraints are added by substituting the
solution values inside the dominance relation expression specified in the model. This
process continues until there are no more incomparability levels left.

For implementing CDP+1, CONJURE is modified to handle and translate dominance
relation and incomparability function statements. The heavy lifting is done by SAVILE
ROW - it recognises the existence of these new statements and follows the flowchart
given in Figure 1 or Figure 2, depending on whether an incomparability function state-
ment exists or not. In these cases, respectively, it calls the backend solver (for one
solution) repeatedly and adds blocking constraints after each solution, or it calls the
backend solver (for all solutions) and adds blocking constraints after each level.

4 CDP+I Model Example for Itemset Mining Rroblem

We present a CDP+I model for the generator itemset mining problem?.

This model operates on a transactional dataset in the form of a multi-set of set of
items. The decision variables are: we always try to find a set of items to represent the
pattern (decision variable name is itemset) and its support using integers (decision
variable name is support).

We use two side constraints on the pattern for each model; minimum value [14]
and maximum cost [6,7]. Moreover, the minimum value constraint is monotone and
the maximum cost constraint is not monotone; hence we use these two constraints to
demonstrate the correct handling of any side constraints independent of whether they
are monotone or not. The corresponding ESSENCE specification is:

such that
(sum item in itemset . values[item]) >= min_value,
(sum item in itemset . costs[item]) <= max_cost

3 We make our ESSENCE model and experimental results available in a Github repository https:
//github.com/stacs-cp/ModRef2019-Dominance.

https://github.com/stacs-cp/ModRef2019-Dominance
https://github.com/stacs-cp/ModRef2019-Dominance

Improving Solution Dominance with Incomparability Conditions 7

4.1 Generator Itemset Mining

Frequent itemset mining is a standard data mining problem where the task is enumerat-
ing itemsets whose support is above a given threshold value. Support is the number of
transaction that contain the pattern itemset as a subset.

Generator itemsets (also called free itemsets or key itemsets [9,8]) are a related
compressed representation of the all frequent itemsets. A generator itemset is a frequent
itemset which does not have any frequent subsets with the same support. Thus, They
represent the minimal frequent itemsets and every other frequent itemset can be built
from generators in a small to larger manner.

Generator itemsets are useful as part of a larger association rule mining task, to-
gether with closed frequent itemsets to find minimal non-redundant association rules [18].

To express them in the dominance logic, we can try to find minimal frequent item-
sets which generates the bigger ones. The dominance will indicate smaller itemsets to
dominate the bigger ones with same support*.

dominance_relation (fromSolution (itemset) subsetEq itemset)
—-> (support != fromSolution (support))

The dominance relation follows the definition very closely. A frequent itemset is a
generator itemset if its support is not equal to the support of any of its subsets.

incomparability function ascending |itemset|

The incomparability function for generator itemsets is very similar to that of closed
itemsets: it uses the itemset cardinality. Two sets A and B are guaranteed not to dom-
inate each other if their cardinalities are the same. This condition is complete when
paired with an ascending direction of search on the itemset cardinality. In contrast to
CFIM, we first find smaller itemsets which are generator itemsets by definition since
they do not have any frequent subsets. Then, dominance blocking constraints are added
and we only find generator itemsets in the successive levels.

By intuition, If we start of from the empty set and look generators increasing on
cardinality, it is sounds that the system won’t find any dominated solutions.

S Computational experiments

The proposed example model has a minimum value and maximum cost side constraints
to demonstrate their ability to handle arbitrary side constraints. We uniformly randomly
generate values between 0 and 5 for minimum value and maximum cost. In addition,
we generate a threshold for the minimum value and the maximum cost constraints
as well. We systematically generate several candidate instances and choose instances
which have a reasonable number of solutions (in the 10,000s at most for all problem
classes except minimal rare itemset mining and in the 100,000s for minimal rare) and
those that can be solved within our time limit of 6-hours*. We generate instances at 5

* We make the problem instances available in our Github repository https://github.com/stacs-cp/
ModRef2019-Dominance

https://github.com/stacs-cp/ModRef2019-Dominance
https://github.com/stacs-cp/ModRef2019-Dominance

8 G Kocak et al.

frequency levels: 10%, 20%, 30%, 40%, 50%. For CFIM we use the instances published
in the appendix of [17].

We employ three configurations to solve each instance. The first two do not include
the incomparability condition, hence they are pure CDP. The difference between the
first two configurations is that the second is tuned to have the same search order as the
third option CDP+I. The first configuration (henceforth called CDP_default_order) uses
the default variable branching order, which is the order of the appearance of the decision
variables. The reason of having CDP_default_order is that it can be generated from the
high level specifications without having expertise. A naive pattern miner without much
CP experience may use the high level CP model without tweaking the search param-
eters. The CDP configuration (i.e CDP_level_order) branches on the level information
(cardinality) in the first place just like CDP+I enforces in its incomparability condition.
The incomparability condition can also capture the search order aspect without requring
CP expertise for the user.

We run our experiments on two identical 32 core AMD Opteron 6272 machines, at
2.1 GHz and with 256GB memory. We run 31 cores in parallel on each machine and
left one core idle to account for system processes. Each separate experiment was given
a single CPU core, 8GB of memory and a 6-hours time limit.

5.1 Datasets

We have used 12 datasets from UCI indirectly and took them from CP4IM 3. The char-
acteristics of these datasets can be seen in the figure Table 1.

dataset transaction |items|density
Anneal 812| 93| 45%
Audiology 216 148| 45%
Australian-credit 653 128 41%
German-credit 1000| 112 34%
Heart-cleveland 296| 95| 47%
Hepatitis 137 68| 50%
Hypothyroid 3247) 88| 49%
Kr-vs-kp 3196| 73| 49%
Lymph 148| 68| 40%
Primary-tumor 336| 31| 48%
Vote 435| 48| 33%
Zoo 101| 36| 44%

Table 1: The dataset which are used in our experiments

5.2 All results
All results can be seen in Table 2. The missing results indicate a time out.

> https://dtai.cs.kuleuven.be/CP4IM/datasets/

https://dtai.cs.kuleuven.be/CP4IM/datasets/

Improving Solution Dominance with Incomparability Conditions 9

CDP_default_order CDP_level_order CDP+I
Instance |Nb Sols|Time Blocks |Calls|{Time Blocks |Calls|Time Blocks |Calls

audio_40 1808 * * * * * *|11234.34| 34677 65
aus_40 18 * * * * * *1 7961.51 699| 51
aus_50 4488 * * * * * *1 734.53|190161| 49
german_20 6 * * * * * *111295.05 161| 38
german_30 144 * * * * * *1 2105.29| 4214 38
german_40| 2338 * * * * * *| 478.61| 75112 38
german_50 398| 4729.19| 79401| 399| 4382.17| 79401 399| 116.54| 9954 30
heart_30 21 * * * * * *| 4529.58 710, 45
heart_40 4928 * * * * * *1792.99(186202| 45
heart_50 527| 3327.65| 139128 528| 3324.67| 139128| 528 57.88| 17461 39
hepatit_20 1819 * * * * * *|1 4892.46| 38811 34
hepatit_30 586 * * * * * *| 487.86| 14458| 34
hepatit 40 | 9231 * * * * * *1170.15|266804| 34
hepatit 50 | 3610{12510.53|6517855|3611{12059.16|6517855(3611 31.96|108546| 34

krvskp_40 1230 * * * * * *19967.5| 28051 36
krvskp_50 427 ¢ *| 5171.46| 9728| 35
lymph_10 2391 *1940.83| 34299 27
lymph_ 20 | 12996 *1 0 511.67|227878| 27
lymph_30 9811 * 160(192797| 27
lymph_40 4181 * 43.38| 89209 27
lymph_50 1044 563.32| 545490(1045| 570.84| 545490/1045 8.16] 20259 23
tumor_20 1998| 4621.02{1997001{1999| 3416.57{1997001|1999 6.24| 19339| 15
tumor_30 1191} 1326.16| 709836(1192| 978.22| 709836|1192 3.86| 11244 15
tumor_40 310 122.04| 48205| 311 94.63| 48205| 311 2.05| 3021 15

* % K ¥ ¥
* % K ¥ ¥
* % % X X
K O¥ K ¥ ¥

tumor_50 61 18.47 1891 62 153 1891 62 1.62 554/ 14
vote_10 9962 * * * * * * 76.28(109203| 16
vote_20 2983(16142.82(4450636(2984 * * * 21.27| 33929| 16
vote_30 268| 365.31| 36046| 269| 268.43| 36046 269 8.49| 3243| 16
vote_40 5 4.65 15 6 3.08 15 6 49 63| 16
20020 4286 * * * * * * 24.32| 45002| 16
z00-30 1132] 740.21| 641278|1133| 565.09| 641278|1133 2.27| 11959| 16
20040 64 11.95 2080f 65 10.38 2080, 65 0.62 732 16
20050 7 1.29 28 8 1.06 28 8 0.45 67| 14

Table 2: All results; while Sols and Calls columns are self explanatory and indicate the number of
solutions and number of solver calls respectively, Blocks column means the number of blocking
constraints used in all solver calls. * indicates experiment timed out.

On Number of Solutions Figure 3 shows the number of solutions which have been
found by these three configurations. They are sorted according to the number of solu-
tions. Missing bullet-points indicate that that specific instance for that configuration is
timed out.

As we can see in this plot, the number of solutions is the same for all the configu-
rations. This is particular to generator itemset mining problem instances using Minion
with a static variable ordering. Since generator itemsets built on cardinality in an in-
creasing manner, CDP ones (CDP_default_order and CDP_level_order) are obliged to
find no dominated solutions thanks to the default variable ordering.

10 G Kocak et al.

nb of sols

Minion CDP_default_order

12000
10000 A A
8000
6000
4000
2000

s § E A

" A
- B A
0 ® A m 4o A mm A"

0 5 10 15 20 25 30
Instances

Fig. 3: Number of solutions found by three configurations.

On Solver Time Figure 4 shows the time spent solving each of the instances, using
the three configurations, sorted by time taken by Minion CDP+I. We see that in gen-
eral CDP+I configurations are significantly better than CDP configurations for most
instances. For a small number of instances (where there are a small number of solutions
to be found.

As we can see, Minion CDP_level _order (in red) performs better than the CDP_default_order
(in green). This is of course expected. Moreover, since CDP+I (in blue) has the same
exact search order as CDP_level_order, it is fair to compare these two in detail. Even
though, this plot show a good overview of this comparison, we can look them side by
side to see the affect of the incomparability directly.

Figure 5a presents a comparison plot between CDP_level order and CDP+I for
MINION. A point above the diagonal line means CDP+I performs betterCDP_level order.
In a majority of the instances CDP+I performs better.

Figure 5b also presents a comparison plot between CDP_level_order and CDP+I.
But this plot shows the reduction on time by ration on CDP_level_order/CDP+I. As we
can see, the reduction can be more than 100 fold.

In both of these time comparison plots, there is a losing instance for CDP+1. The
reason comes from the number of solver calls.

On Number of Solver Calls Figure 6 presents the number of solver calls made by
CDP+I and the two CDP configurations. The number of solver calls is identical for
CDP configurations since it is one more than the number of solutions. CDP+I makes
significantly fewer solver calls, except for a couple of instances where there is a small
number of solutions (< 25) and a comparatively larger number of levels.

5.3 CDP+I’s best and worst performances

When we can look at the instances where CDP+I outperforms CDP, it is due to reduc-
ing the number of solver calls drastically. We can see this one particular example in

10*

Improving Solution Dominance with Incomparability Conditions

Minion CDP_default_order

Minion CDP_level_order
A Minion COP+1

10°

Time in seconds
-
v

10°

10

15
Instances

20 25

Fig. 4: Solver time for all instances, sorted by Minion CDP+I.

Table 3. The number of solver calls is 10 times less and this affects the solver total time
drastically. Also, the total blocking clauses used in each solver search is averages out

really less as well.

Config Nb of Sols|Total Solver Time|Total Blocking Clauses|Solver Calls
minion CDP+I 3610 31.95 108546 34
minion CDP_default_order 3610 12510.53 6517855 3611
minion CDP_level_order 3610 12059.16 6517855 3611

Table 3: Example of Hepatitis dataset on 50% frequency

If we look at that one single losing instance Table 4, even though the solver time is
really close, when we look at the ration it is significant. The difference comes from +10
solver calls happened in CDP+I compared to CDP.

Config Nb of Sols|Total Solver Time|Total Blocking Clauses|Solver Calls
Minion CDP+I 5 4.90 63 16
Minion CDP_default_order 5 4.64 15 6
Minion CDP_level_order 5 3.08 15 6

Table 4: Example of Vote dataset on 40% frequency

12 G Kocak et al.

Minion Minion ratio

102

D/D+I1

10t

CDP Solver Time (s)

107!

107t 10° 10t 102 10° 10 10° 10t 10?2

CDP+I Solver Time (s) solver time D+l
(a) Comparing CDP_level order with (b) Reduction ration when comparing
CDP+I on Minion. CDP_level_order with CDP+I on Minion.

Fig. 5: Comparing solver times between the CDP and CDP+I configurations.

copP
3500 ® CDP+l

3000

2500

2000

1500

Number of solver calls

1000

500

0 5 10 15 20 25 30
Instances

Fig. 6: Number of solver calls for the comparison of CDP vs CDP+I
6 Conclusion

In this paper we extended the high-level problem specification language ESSENCE to
support dominance programming features. In addition, we defined and implement an
enhancement to standard CDP in the form of an incomparability function statement.
Equipped with CDP+I capabilities, ESSENCE becomes a particularly suitable language
for specifying and solving constraint-based itemset mining problems that both con-
tain problem specific side constraints and constraints among solutions. We explained
our architecture for CDP+I and present preliminary computational experiments on the
Generator Itemset Mining problem to show the efficacy of this approach. We showed
that by adding an explicit incomparability function to a CDP model, one can achieve

Improving Solution Dominance with Incomparability Conditions 13

significant performance gains and produce a drastically reduced number of dominated
solutions.

Future work includes the application of CDP+I to a wider range of problem classes,

both in data mining and beyond. We believe multi-objective optimisation problems will
be a natural next application area for CDP+I.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proc. 20th
int. conf. very large data bases, VLDB. vol. 1215, pp. 487-499 (1994)

Akgun, O., Frisch, A.M., Gent, I.P., Hussain, B.S., Jefferson, C., Kotthoff, L., Miguel, L,
Nightingale, P.: Automated symmetry breaking and model selection in conjure. In: Inter-
national Conference on Principles and Practice of Constraint Programming. pp. 107-116.
Springer (2013)

. Akgun, O., Gent, L.P, Jefferson, C., Miguel, 1., Nightingale, P.: Breaking conditional sym-

metry in automated constraint modelling with conjure. In: ECAL pp. 3-8 (2014)

. Akgun, O., Miguel, L, Jefferson, C., Frisch, A.M., Hnich, B.: Extensible automated con-

straint modelling. In: Twenty-Fifth AAAI Conference on Artificial Intelligence (2011)

. Bonchi, E,, Giannotti, F., Mazzanti, A., Pedreschi, D.: Examiner: Optimized level-wise fre-

quent pattern mining with monotone constraints. In: Third IEEE International Conference
on Data Mining. pp. 11-18. IEEE (2003)

. Bonchi, F, Lucchese, C.: On closed constrained frequent pattern mining. In: Fourth IEEE

International Conference on Data Mining (ICDM’04). pp. 35-42. IEEE (2004)

. Bonchi, F.,, Lucchese, C.: Extending the state-of-the-art of constraint-based pattern discovery.

Data & Knowledge Engineering 60(2), 377-399 (2007)

. Boulicaut, J.F,, Jeudy, B.: Mining free itemsets under constraints. In: Proceedings 2001 In-

ternational Database Engineering and Applications Symposium. pp. 322-329. IEEE (2001)

. Boulicaut, J.F., Bykowski, A., Rigotti, C.: Approximation of frequency queries by means of

free-sets. In: European Conference on Principles of Data Mining and Knowledge Discovery.
pp- 75-85. Springer (2000)

Chan, R., Yang, Q., Shen, Y.D.: Mining high utility itemsets. In: Third IEEE international
conference on data mining. pp. 19-26. IEEE (2003)

De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: Proceed-
ings of the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining. pp. 204-212. ACM (2008)

Frisch, A.M., Harvey, W., Jefferson, C., Martinez-Herndndez, B., Miguel, I.: E ssence:
A constraint language for specifying combinatorial problems. Constraints 13(3), 268-306
(2008)

Guns, T., Dries, A., Nijssen, S., Tack, G., De Raedt, L.: Miningzinc: A declarative framework
for constraint-based mining. Artificial Intelligence 244, 6-29 (2017)

Guns, T., Dries, A., Tack, G., Nijssen, S., De Raedt, L.: Miningzinc: A modeling language
for constraint-based mining. In: Twenty-Third International Joint Conference on Artificial
Intelligence (2013)

Guns, T., Stuckey, P.J., Tack, G.: Solution dominance over constraint satisfaction problems.
arXiv preprint arXiv:1812.09207 (2018)

Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: A
frequent-pattern tree approach. Data mining and knowledge discovery 8(1), 53-87 (2004)
Kocak, G., Akgiin, O., Miguel, 1., Nightingale, P.: Closed frequent itemset mining with ar-
bitrary side constraints. In: 2018 IEEE International Conference on Data Mining Workshops
(ICDMW). pp. 1224-1232. IEEE (2018)

14

18.

19.

20.

21.

22.

23.

24.

25.

26.

G Kocak et al.

Kryszkiewicz, M.: Representative association rules and minimum condition maximum con-
sequence association rules. In: European Symposium on Principles of Data Mining and
Knowledge Discovery. pp. 361-369. Springer (1998)

Negrevergne, B., Dries, A., Guns, T., Nijssen, S.: Dominance programming for itemset min-
ing. In: 2013 IEEE 13th International Conference on Data Mining. pp. 557-566. IEEE (2013)
Nethercote, N., Stuckey, PJ., Becket, R., Brand, S., Duck, G.J., Tack, G.: Minizinc: Towards
a standard cp modelling language. In: International Conference on Principles and Practice of
Constraint Programming. pp. 529-543. Springer (2007)

Nightingale, P., Akgiin, O., Gent, LP,, Jefferson, C., Miguel, I.: Automatically improving
constraint models in savile row through associative-commutative common subexpression
elimination. In: International Conference on Principles and Practice of Constraint Program-
ming. pp. 590-605. Springer (2014)

Nightingale, P., Akgiin, 0., Gent, LP, Jefferson, C., Miguel, 1., Spracklen, P.: Automatically
improving constraint models in savile row. Artificial Intelligence 251, 35-61 (2017)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for
association rules. In: International Conference on Database Theory. pp. 398—416. Springer
(1999)

Soulet, A., Rioult, F.: Efficiently depth-first minimal pattern mining. In: Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining. pp. 28-39. Springer (2014)

Szathmary, L., Napoli, A., Valtchev, P.: Towards rare itemset mining. In: 19th IEEE Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI 2007). vol. 1, pp. 305-312.
IEEE (2007)

Zaki, M.J.: Scalable algorithms for association mining. IEEE transactions on knowledge and
data engineering 12(3), 372-390 (2000)

	Towards Improving Solution Dominance with Incomparability Conditions: A case-study using Generator Itemset Mining

