Efficient Exact Computation of Setwise Minimax
Regret *

Federico Toffano®, Paolo Viappiani2, and Nic Wilson!

! Insight Centre for Data Analytics, Department of Computer Science, University
College Cork, Cork, Ireland {federico.toffano,nic.wilson}@insight-centre.org
2 UMRT7606 CNRS, LIP6, Sorbonne Université, 4 pl. Jussieu, 75005 Paris, France
paolo.viappiani@lip6.fr

Abstract. A key issue in incremental preference elicitation is choosing
at each stage an appropriate query to the user in order to find a near-
optimal solution as quickly as possible. A theoretically attractive method
is to choose a query that minimises max setwise regret which is the worst
case loss response in terms of value of information. We focus here on the
situation in which the choices are represented explicitly in a database,
and with a simple model of user utility as a weighted sum of the criteria;
in this case when the user makes a choice we learn a linear constraint
on the unknown vector of weights. We develop an algorithmic method
for computing minimax setwise regret for this form of preference model,
by making use of a SAT solver with cardinality constraints to prune
the search space, and computing max setwise regret using an extreme
points method. Our experimental results demonstrate the feasibility of
the approach and the very substantial speed up over the state of the art.

Keywords: Preference elicitation - setwise regret - SAT with cardinality
constraints.

1 Introduction

Preference elicitation is a key task in many artificial intelligence applications.
Several authors [30,8,11,12,28,7,13,26] have proposed interactive elicitation
methods that revise a preference model based on a user’s responses to questions
asked with the intent of learning valuable preference information.

A principled approach is to represent the set of feasible utility functions that
are consistent with the user’s behavior, and to use minimax regret for selecting
recommendations. Minimax regret selects as recommendation an alternative that
minimises the worst case loss with respect to feasible parameters of the value
function. The practical effectiveness of regret-based elicitation has been shown
in numerous works (see, e.g., [30,8,10]) and in particular during a study carried
out with real users [13].

* This material is based upon works supported by the Science Foundation Ireland
under Grant No. 12/RC/2289-P2 which is co-funded under the European Regional
Development Fund.

2 Federico Toffano, Paolo Viappiani, and Nic Wilson

In [28] and [29] the authors generalized the concept of Minimax Regret defin-
ing the Setwise max Regret (SMR) which is used to evaluate a set of alternatives
rather than a single alternative, and the setwise minimax regret (SMMR) which
is used to select an optimal set w.r.t SMR. This provides a principled method for
capturing the idea of recommendation sets. A remarkable property of setwise re-
gret is that an optimal recommendation set with respect to SMR can be used for
elicitation (asking to the decision maker which item is the most preferred) and
constitutes a myopically optimal query, that is, the set maximizes an analogue
of value of information [16] in a distribution-less sense. This makes it compelling
to display an optimal set of items w.r.t. SMR with a combined elicitation and
recommendation purpose: the system proposes a set of recommended items, the
user picks the one he prefers, then the system updates the model and shows a
new set of items; and this proceeds until a termination condition (max regret
lower than a threshold; or simply when the user is satisfied) is met.

However, setwise regret is computationally very demanding to optimize; a
straightforward approach requires the consideration of all subsets of a given
cardinality, and the evaluation of their setwise max regret. Because of this high
complexity, several heuristic methods are considered in [28,29].

In this paper we address the problem of computing SMMR exactly for database
problems (e.g., when a list of items with their features is readily available, as
opposed to configuration problems where alternatives need to be constructed
through constraint satisfaction). The main contribution of the paper is to pro-
pose an efficient algorithm for computing an optimal recommendation set, i.e.,
optimizing SMMR, exploiting some intrinsic properties of this criterion.

Our method relies on search; nodes in the search tree correspond to sets of
alternative with cardinality up to k, and leaves to sets with cardinality exactly k.
Pruning is done when we are sure that no extension of the current set can beat
the previously found solution; to check this condition we use a SAT solver with
cardinality constraints to prune the search space. This idea is combined with a
fast subroutine to compute setwise max regret of a partial instantiation using
extreme points (instead of using linear programming techniques as in previous
works). The resulting algorithm is a method that is much faster than the state
of the art, as is shown in our experimental tests.

The paper is organized as follows. In Section 2 we state our general assump-
tions, we recall the definitions of minimax regret and its setwise extensions, and
provide some basic properties. In Section 3 we describe the main ideas behind
our algorithm and its main components; while in Section 4 we provide a detailed
description of the main algorithm to compute the SMMR. We provide some ex-
perimental results to validate our approach in Section 5, and conclude with a
final discussion in Section 6.

2 Background

We now give some general background and notation, formally define minimax
regret and its setwise variant, and introduce some basic properties.

Efficient Exact Computation of Setwise Minimax Regret 3

We assume an underlying decision problem where the task is to choose one
among a finite set A of alternatives (items, products, options). The user, also
known as the Decision Maker (DM), is endowed with a utility or value function
Uy, mapping from A to R; w denote the parameters of the value function (a
specific choice of w uniquely determines the value function). The goal is to pick
arg maxgc A Uy, (2); however we assume that we (i.e., taking the point of view of
a recommender system tasked to support decision-making) do not have access to
the DM’s true value function. The problem is to make recommendations under
value function uncertainty (strict uncertainty); we suppose that our knowledge
about the user’s preferences is such that we can identify W as the set of scenarios
representing all the consistent parametrisations w of a DM’s value function ..

Minimaz regret: The Minimaz Regret (MMR) [23,19] criterion is frequently
used to solve decision problems under uncertainty. More recently, it has been
used in artificial intelligence to to evaluate alternatives as potential recommen-
dations, where the uncertainty refers to the parameters of the decision model
[22,11]. When considering a single recommendation, alternatives can be evalu-
ated according to the mazx regret, quantifying the worst-case loss due to utility
uncertainty:

MRy (o, A) = gune%(glgg Uw(B) = tw(a)) (1)
= max(Vala (w) — uy(a)), (2)

where we let Vala (w) = maxaea uy (o) be the DM’s value function for A defined
as the maximum value that we can obtain from any alternative o € A with
respect to the value function w,,. The minimax regret represents the minimum
worst-case loss that can be attained by minimising max regret:

MMRw(A) = min MRy (a, A) = min max(Vala (w) — uw(a)). 3)

By recommending to the decision maker an alternative associated with minimax
regret, i.e., alternative a* € argmax,c, MRy (o, A), we provide robustness in
face of uncertainty (due to not knowing the user’s value function).

Regret-based elicitation has been applied to areas such as the elicitation of
multi-attribute utilities (see, e.g., [30,12, 5]), or the elicitation of preferences for
ranking and voting problems (see, e.g., [20,3,7]).

Ezample 1. Consider the set of alternatives A = {a1 = (4,4), a2 = (2,10),a3 =
(10,2)} whose value function w, (o) = w - oy with w € W = {w € R?* : w; >
0, Zle w; = 1} is shown in Figure 1. MRy (a1, A) = 6 is maximised in w; = 0
and w; = 1, MRy (ag, A) = 8 is maximised in wy = 1, and MRy (a1,A) = 8 is
maximised in wy = 0. Thus, MMRw (A) = 6.

4 Federico Toffano, Paolo Viappiani, and Nic Wilson

12

— a1=(4.4)
-+ ,=(2,10)
10 1. -= @=(102)
-
_-""02
-
8 —=t
’/
—_ . /”
-
3 6 _ual
//’) ..
’,,’ (4,4)
4 .
-
//’
/”’ e
27 (2,10)
0 | | 1
0 1/4 12 3/4 1

w1

Fig.1: Plot of the linear value functions w,(a;) = w - «; for the alternatives
a1 = (4,4) (blue solid), as = (2,10) (black dotted) and a3z = (10,2) (green
dashed) with w € W = {w € IR? : w; > 0, 2?21 w; = 1}.

Setwise regret: In many applications it is desirable to produce a recommenda-
tion set, and not just a single recommendation, giving the opportunity to the
decision maker to pick the alternative (among those of the recommendation set)
that provides most value to him/her. Intuitively, by providing several recommen-
dations, it is more likely that at least one of them will have high utility value
to the decision maker. As originally observed by Price and Messinger [21] it is
therefore a good idea to show “diverse” recommendations that have high value
for different parts of the parameter space W.

Setwise regret constitutes a principled way to measure the quality of a recom-
mendation set. Assume that, when we provide B as recommendation set, the de-
cision maker is able to pick the most preferred item (the one with highest value)
in B, thus perceiving value Valg(w) = max,ep ty () when the “true” value
function is dictated by parameters w. The regret of a set B with respect to w is
the difference between the utility of the best item under w in the whole dataset A
and the utility of the best item w.r.t. w in the set B; that is, Vala (w) — Valg (w).
The setwise maz regret (SMR) [28,29] of a subset B of the finite set of alterna-
tives A, with respect to the parameter space W, is then defined as the maximum
of this difference:

SMRyw(B,A) = glez%/)\(](\/'alA(w) — Valg(w)). (4)

The value SMRyy (B, A) is the worst case loss, due to value function uncertainty,
of recommending the set B. Notice that, obviously, SMR reduces to MR when
the set B is a singleton; at the other extreme, if B = A (the whole dataset is
recommended), then SMR is zero.

Efficient Exact Computation of Setwise Minimax Regret 5

An optimal recommendation set of size k is a subset of A of cardinality k
that minimizes setwise max regret with respect to WW. Thus, the setwise minimaz

regret (SMMR) [28,29] of size k with respect to W is defined by:

k i .
SMMRy),(A) = BgrAr:l|1}r31|:k SMRyw (B, A). (5)

The value SMMR{C/V (A) is then the minimum setwise max regret we can obtain
from all the possible subsets B of A with cardinality k& with respect to any
scenario w € W. Notice that k is usually a small number, usually identified by
an application expert.

Recommendation sets can be used in elicitation, where they are treated as
choice queries (i.e., questions of the kind “Among a, b, and ¢, which one do you
prefer?”) with the goal of reducing uncertainty in order to improve the quality
of future recommendations; that is, reducing minimax regret. It turns out [28,
29] that optimal recommendation sets w.r.t. SMMR are also myopically optimal
in an elicitation sense, as they ensure the highest worst-case (with respect to the
possible query’s responses) reduction of minimax regret a posteriori.

Ezample 2. Consider the set of alternatives A = {ag = (4,4), a2 = (2,10), a3 =
(10,2)} whose value function u,(e;) = w - a; with w € W = {w € R? :
w; > O,Zle w; = 1} is shown in Figure 1. SMRy ({1, a2}, A) = 6 is max-
imised in w; = 1, SMRy({a1,a3},A) = 6 is maximised in wy; = 0, and
SMRyy({az, a3}, A) = 0 since Valg,, a1 (w) > (1) for any w € W. Thus,
SMMR3,(A) = 0.

Optimization of setwise regret: Computation of SMMR differs with respect to
the type of decision problem. When alternatives are constructed from a configu-
ration problem, the decision space is encoded with variables and hard constraints
express which combinations of variables are feasible [8,12,4]); for example, this
is the case of configuring computer parts to obtain a customized laptop. In this
type of problem setwise regret can be optimized with a mixed-integer program
and solved by techniques such as Bender’s decomposition and constraint gener-
ation [28,29].

In this paper we focus on database problems, where the alternatives are
enumerated and represented with an explicit list of multi-attribute outcomes
(see, e.g., [12,13,7]); for example the problem of choosing one from a catalogue of
already assembled laptops. In this case the straightforward approach to optimize
SMMR is based on the generation of all the possible sets of a specific size k and
choosing the one with lowest setwise maximum regret SMR. Given the high
complexity of the computation of an optimal set using the SMMR criterion, in
[28,29] the authors have also proposed several heuristics methods that have been
shown to have good performance in simulation.

Value functions: While the previously introduced concepts are quite general
and apply to any kind value function, in this work we focus on multi-attribute
problems with linear value functions. An alternative « is represented with a

6 Federico Toffano, Paolo Viappiani, and Nic Wilson

vector of p reals, with each component corresponding to a criterion, and «(7)
being the evaluation of a with respect to the ith criterion. We define u,, () = a-w
(= >-%_, w;a(i)) to be the value function parametrised with respect to w, where
a€AC IR and w € U and

P
U:{weﬂp:wiZO,Zwizl},
i=1

and the weight w; relates to the importance that the DM gives to criterion i.

In general, setwise (minimax) regret is defined for any closed (and thus com-
pact) subset W of U. Our algorithmic approach assumes that W is a compact
convex polytope. For example, W could be a reduction of U given by a set A
of DM’s input preferences, with, for instance, a user preference of alternative «
over § leading to the constraint a - w > 8- w (see, e.g., [31]).

Basic properties of setwise regret: We now give some basic properties of setwise
regret that we will use later. First of all we show how SMRyy (B, A) is monotone,
with respect to set inclusion, in both B and W; and then show how SMMR{C,V is
monotone in k.

Lemma 1. SMRy (B, A) is monotonically decreasing in B, and monotonically
increasing in W, i.e., if B D B and W' C W, then SMRy (B, A) < SMRyy(B, A).

An alternative @ € A is said to be W-dominated if there exists another
alternative 8 € A such that the former has higher-or-equal value than the latter
for any w € W, and the relation is strict for at least one value. For a given set
A, let UDyy(A) C A be the set of elements of A that are undominated in W.

Alternatives that are known to be dominated given W can be removed as
they do not impact the value of setwise max regret, as shown by the next Lemma.

Lemma 2. SMRy (B, A) = SMRyy(UDyy,(B),UDy(A)) and, for any k > 1,
SMMRY,,(A) = SMMRS,(UDyy(A)).

3 An Efficient Algorithm to Compute Setwise Minimax
Regret

The main idea behind our algorithm is to use a depth-first search over subsets
of A, with setwise max regret computations at leaf nodes of the search tree,
and with a method of pruning branches that reduces the number of setwise max
regret computations. More precisely, for a given subset C of A with cardinality
less than k, we use a method that determines, for a particular discrete subset
W' of W, if SMRy(B,A) > T holds for all supersets B of C with cardinality
k, where T is the current upper bound of SMMR)I“/V(A). If this holds then, by
Lemma 1, SMRy(B,A) > 7 for all such B, enabling us to backtrack at this
point of the search.

In the next paragraph we define how we represent subsets of A; then we define
how to evaluate the setwise max regret of a set of subsets of A simultaneously
with a Boolean satisfiability (SAT) problem.

Efficient Exact Computation of Setwise Minimax Regret 7

Search space: We consider the set of Boolean strings of length at most n = |A]
as a representation of the search space over subsets of A with cardinality less
or equal to k. For string z, let Len(z) be the length of x. Let us label A as
aq,...,ap, where n = |A]. We say that a string is complete if it is of length n,
and otherwise it is partial. Each complete string x corresponds to a subset B,
of A, where B, is the set of all a; € A such that x has a one at its i-th position.
We say that complete string z is of cardinality k if it contains k ones, i.e., if the
corresponding subset B, is of cardinality k. If x and y are Boolean strings then
we say that y extends x if Len(y) > Len(z) and the first Len(z) places of y are
the same as those of . We say that y is a complete extension of x if y extends x
and y is a complete string. Each partial string = represents a set B, of subsets
of A, i.e., all those subsets of cardinality k that correspond to extensions of x.
B, is thus the set of all sets B, for complete extensions y of z of cardinality k.
In Section 3.3 we define how to generate strings z in turn.

Ezample 3. Let A = {ai,..., a5} be a set of n = 5 elements, and let k = 3. The
complete string z = 01101 represents the subset B, = {ag, a3, as}. The partial
string « = 011 represents the subsets B, = {{ag, as,aq}, {a2, a3, as}}, where
the complete extensions of z are y = 01101 and y’ = 01110.

3.1 Pruning the Search Space using SAT

Evaluating subsets of A: Given a partial string «, if a set B, € B, is such that
SMRw(B,,A) < 7, then B, has to contain at least one alternative with worst
case regret lower than 7 for each w € W’. This concept is formally defined with
the following lemma and it will be used to check if there could exists a set in B,
improving the current upper bound 7 of SMMR{?V (A).

Lemma 3. Let 7 be an upper bound of SMMRY,(A), W C W and B C A.
For w e W, let I, be the set of o € A such that Vals(w) — uy (o) < 7. Then
SMRy: (B, A) < T if and only if for all w € W', there exists « € B such that
a€ .

Proof. From the definition of setwise max regret it follows that SMRy (B, A) <
7 if and only if Vala (w) — Valg(w) < 7 for all w € W/, which is if and only if for
all w € W there exists @ € B such that Vala(w) — uy (@) < 7, which is if and
only if a € I, since B C A.

To check if there exists a set B, € B, such that SMRw(B,,A) < 7, we
define a SAT problem with cardinality constraint ¢ (see, e.g., [24]), where the
cardinality constraint is used to define the size k of the sets in B,,.

Ezample 4. Consider the following SAT formula: X = (X; V X3) A (X1 V X3)
with cardinality constraint ¢ = 1, where X; are {0, 1}-valued variable. X; with
i = {1, 2,3} are literals, and (X;V X») and (X;VX3) are clauses. The cardinality
constraint ¢ = 1 means Zf’zl X, = 1. In this example, X is satisfiable since if
X7 =1 then X = 1. But if for example we add the constraint X; = 0, then X
is unsatisfiable since for any valid assignment of the cardinality constraint, i.e.,
(Xl = O,XQ = 17X3 = 0) or (X1 = O,XQ = 0,X3 = 1), we get X =0.

8 Federico Toffano, Paolo Viappiani, and Nic Wilson

In our SAT problem, we use a {0,1}-valued variable X; for each «a; € A.
These are used to reason about the unknown sets B, in B, which we want to
be such that SMRw(B,,A) < 7. Then X; = 1 means that By > «;. Given a
partial string z, we then define the corresponding SAT problem with cardinality
constraint as follows:

(1) The cardinality constraint [B,| = k is expressed as >, -, Xi = k.
(2) The constraint that y extends « is expressed as: for all ¢ € {1,..., Len(x)},
o if 2:(1) =1 then X; =1 (where x(i) is the i-th value of x);
o if 2(i) = 0 then X; = 0.
(3) For each w € W' we define a clause \/
such that Vala (w) — uy () < T.

aer, Xis where I, is the set of @ € A

This SAT problem is satisfiable if and only if there exists B, € B, such that
for all w € W’ there exists a € B, such that a € I, which is (by Lemma 3)
if and only if there exists B, € B, such that SMRy(B,, A) < 7. Therefore, if
the SAT problem is unsatisfiable, then for each B, € B,, SMR(B,,A) > T,
and thus (by Lemma 1) SMRw (B,,A) > 7. This means that there is then no
need to explore any string y extending xz, so we can then backtrack from the
current search node associated with z, saving us from computing SMRyy (B, A)
for B, € B,.

Ezample 5. Consider the set of alternatives A = {a1 = (4,4), a2 = (2,10), a3 =
(10,2)} whose value function wu,(a;) = w - o; with w € W = {w € R? : w; >
O,Z?Zl w; = 1} is shown in Figure 1. Let k = 2, W = {(0,1),(0.5),(1,0)},
7 = 1, and let = be the string 1. Thus, I'g1) = {a2}, I{05,05 = {a2,a3},
Iy = {as} and B, = {{a1,az2},{a1,a3}} since the complete extensions of
x with cardinality k¥ = 2 are y = 110 and 3y’ = 101. The corresponding SAT
problem is then XoA(X5V X3)A X5 with cardinality constraints ¢ = 2 and X7 = 1.
It is easy to see that in this case the SAT problem is unsatisfiable; therefore we
can avoid the computation of SMRyy ({a1,as}, A) and SMRyw ({a1, a3}, A). In
fact, the subset B of A cardinality 2 that minimises SMRw (B, A) is B = {as, as}.

3.2 Computation of max regret

With linear value functions u,(-), a standard method to compute the setwise
max regret SMRyy(B,A) of a set B € A consists of the evaluation of a linear
programming (LP) problem for each o; € A (see [28]). Briefly, for a; € A we
have SMRyy (B, {«a;}) = max,ew(a; - w — Valg(w)), which means that we can
compute SMRyy (B, {a;}) as the maximum value d; subject to the constraints
w € W, and (a; —) -w > §; for each § € B. We can then compute SMRyy (B, A)
as maxq,ea SMRw (B, {a}).

However, here we also make use of a method, described briefly in the next
paragraph, that we developed previously [2] for computing SMRy (B, A). In our
experimental results in [2] we found this method to be between 4 to 60 times
faster than the LP method for p < 6.

Efficient Exact Computation of Setwise Minimax Regret 9

With linear value functions wu,, (), the max regret of an alternative 8 can be
easily computed evaluating only the extreme points Ezt(W) of W, i.e., SMRw (S,
A) = SMR gy w)(B, A). For the setwise max regret of a set B instead, we need to
evaluate the extreme points points of Ws for each f € B, where W = {w e W :
B-w>p;-w,Vp; € B} Let yYW,B) ={(w,r) : weW, B-w<r V5eB}
this can be seen to be the epigraph [9] of the value function Valg on W. Let
UE(B) = Ugep Ext(Wp) be the union of the sets of extreme points Ezxt(Wp) for
each 8 € B. In [2] it is shown that UE(B) equals the projection in W of the set
of extreme points Ezt(y(W, B)) of v(W, B). Also, for each (w,r) € Ezt(y(W,B))
we have that » = Valg(w). This implies that SMRy, (B, A) can be computed as:

SMRyy (B, A) = werrll]agB)(ValA(w) — Valg(w)). (6)

Ezample 6. Consider the example in Figure 2 with A = {(
and let B = {(2a 8)7 (87 2)} W(278) = {(Oa 1)3 (%v %)}a W(8,2) = { %
Ezt(y(W,B)) = {((0,1),8),((3,3),5)((1,0),8)}, and UEB) = {(0,1),(5,3),
(1,0)}. Then SMRyy (B, A) = max((8—38), (6—5), (8—8)) = 1 and it is maximised
with w = (3, 3), and Valg((3, 1)) = 5.

10

—= A={(2,8),(8,2),(6,6)}
= y(W,{(2,8).(8,2)})
== Vala(w)

uw(*)

4 ”/ \\\\\

217" (T.s>\

0 T T

0 1/4 1/2 3/4 1
Fig.2: Value function wu,(e;) = w - «; for each alternative
in A = {(2,8),(82),(6,6)} (green solid) where w € W =
{w e R?:w; > O,Z?zl w; = 1}. Note that we show wuy,(;) only with re-
spect to w; since wy = w; — 1. The red dotted line represents Vala(w),

the blue area is the epigraph y(W,B) = {(w,r) : w € W,r > Valx(w)} for
B ={(2,8),(8,2)}, and the red points are the extreme points of the epigraph.

10 Federico Toffano, Paolo Viappiani, and Nic Wilson

3.3 Generating subsets of A using depth-first search

We generate strings = representing subsets of A sequentially using a depth-first
search with backtracking on a binary tree T, and with a fixed value and variable
ordering (though the variable ordering depends on the value k: see Section 3.4).
Note that we are not interested in all the possible binary strings of length n, but
instead we want to generate complete strings « with k ones and the corresponding
sub-strings since these will represents subsets B of A with |B| < k. The order
in which we reach complete strings (and their associated subsets) is based on
the obvious lexicographic order, i.e., ascending numerical order if the strings
are viewed as binary numbers. We then define T as follows: the root represents
the empty string; internal nodes represent strings of length less than n; and
leaves represent strings of length n with k£ ones. The out-edges of an internal
node pointing to the corresponding left and right children have values 0 and 1
respectively. Thus, if an internal node represents the string x, then the left child
represents the string 0 and the right child represents the string x1.

We generate strings sequentially starting from the left most leaf node rep-
resenting the subset (a,—j+1,...,0n). Given a generic string x;, we define two
methods to generate the next string z;41, namely, the backtracking case and the
non-backtracking case.

Backtracking case: Let NextBT(x;,n, k) = ;41 be the backtracking case of the
J-th string. With NexztBT(z;,n, k) we move from the current node representing
x; toward the root until we find an edge e with value zero. Let v be the parent
of e. We define NextBT(x,n,k) as the string represented by the right child of
v. We will use this method to generate the string x;; when z; is a complete
string, or when z; is a partial string but SMRyy(B,A) > 7 for all B € B,,.
Roughly speaking, we use NeatBT(x;,n, k) when we want to evaluate a new set
of subsets since B, N By, = 0.

Non-backtracking case: Let Next(x;,n,k) = x;+1 be the non-backtracking case
of the j-th string. With Nezt(x;,n, k) we compute the next string following the
depth-first search logic. We will use this method to generate the string ;41 for
the cases not covered by the backtracking case, i.e., when x; is not a complete
string and we can’t ensure that SMRyy(B,A) > 7 for all B € B,,. Roughly
speaking, we use Next(z;,n,k) to reduce the sets to evaluate, in fact, B C
B, .

In both cases, when we visit the root, and the corresponding out-edges have
already been visited, we stop the search. Note that if B, , is a singleton set
with z;4; not being a complete string, then we can speed up the computation
by jumping to the leaf node corresponding to the unique set in B, ,. This can
happen when x;4; can be extended only with ones or only with zeros in order
to satisfy the constraint that a complete string x must have k ones.

Tjt1

Efficient Exact Computation of Setwise Minimax Regret 11

3.4 Further implementation details

Generating W': We start with W' = (), then for each SMR computation of a
subset B of A, if SMRyy,(B,A) is greater than the current upper bound 7 of
SMMRYE,,(A), then we update W' as W = W' U UE(B) where UE(B) is the
projection of Ezt(y(W,B)) to W. We use the set UE(B) to update W’ since
these points have already been computed, during the evaluation of SMRy, (B, A).
One could update W’ using only the point w € W in which SMRy, (B, A) is
maximised; however, collecting more points in W’ adds more clauses to the SAT
problem, and thus increases the possibility of unsatisfiability, leading to pruning
of the search tree.

SAT instances: For a given W', when the SAT problem associated with a string
is solvable, we can use the corresponding instantiation to define the SAT problem
associated to a string y extending z. In fact, the SAT problem corresponding to
y will be the same as that associated with = but with the additional constraints
X; =y; foralli e {Len(xz}+1,..., Len(y)). This is particularly useful when y is
a substring of the solution X found for the SAT problem for x, since in this case
X is a solution also to the SAT problem associated with y, and thus we do not
need to call the SAT solver. For example, suppose n =5, k = 3 and x = 01, and
suppose that the solution of the SAT problem associated with z is X = 01110.
Then, if y = 011 and W’ has not changed, we don’t need to define from scratch
a new SAT problem since the SAT problem associated with ¥ is the same as that
associated with x but with the additional constraint X3 = 1. Furthermore, in
this case y is also a substring of X, thus we do not need to call the SAT solver
since X is a solution also for the SAT problem associated with y.

4 Pseudocode

In this section we combine the concepts presented in Section 3, defining the whole
procedure for the computation of SMMRS,,(A). The inputs of our algorithm are:

1. A finite set A of alternatives a; where each alternative is represented as a
p-dimensional vector of reals.

2. The DM’s preference state space W representing the possible parametri-
sations w of the value function wu,(-) expressed as a compact subset of
{fwe RV :w; >0,>0 w; =1}

3. An integer k < |A| representing the cardinality of the subsets of A that we
want to evaluate.

We start with W = (), with x equal to n — k zeros followed by n ones, and
with 7 = 0co. Then we proceed as follows:

1) If z is the empty string then we stop the algorithm and return 7.
2) If Len(z) = n (i.e., z is a complete string) then

12

Federico Toffano, Paolo Viappiani, and Nic Wilson

a) we compute SMRyy(B,,A), where B, is the set represented by x, also
generating the set UE(B,) (that is the projection on W of the set of
extreme points of the epigraph v(W, B,));

b) we update the upper bound 7 by 7 = min(7, SMRyy (B, A));

¢) we update W = W' U Ext(Wg,);

d) we move to the next string with the backtracking case NextBT(xz,n, k).

3) Otherwise, Len(z) < n (i.e., = is a partial string). We call Boolean function

SAT(x,k, A, W', T), which returns TRUE if and only if the associated SAT
problem (see Section 3.1) is satisfiable, i.e., there exists B, € B, such that
SMRw (B, A) <T.

a) If the SAT problem is satisfiable, we move to the next string with the
non-backtracking case Next(z,n, k);

b) If the SAT problem is not satisfiable, we move to the next string with

the backtracking case NextBT(x,n, k).

When we have gone through all of the space of strings, i.e., when x is the

empty string, the value of 7 will equal SMMR},,(A), i.c., the minimum value of
SMRyy (B, A) over all subsets B of A of cardinality k.

In Algorithm 1 we show the recursive procedure to compute SMMR{“,V(A).

Algorithm 1 Minimum setwise max regret

1: procedure SMMR(k, A, W)

»

T 4= 00
x + 0[n — k]1[k]
BestSMR < n reals initialised to co
do
if Len(z) =n then
SMR < SMRyw (B, A)
7 < min(7, SMR)
W « W' U UE(B,)
x < NextBT(z,n, k)
else if SAT(x,k, A, W 7) then
x < Next(z,n, k)
else
x < NextBT(z,n,k)
while = # empty string
return 7

5 Experimental Results

We used CPLEX 12.8 [17] as the linear programming solver, and we used the
Python library pycddlib [27] for computing the extreme points of a the epigraph
of the value function. As the SAT solver, we used Minicard implemented in

Efficient Exact Computation of Setwise Minimax Regret 13

the Python library Pysat [25] which have a native method to set a cardinality
constraint. From Lemma 2 it follows that SMMRY,,(A) = SMMR},,(UDyy(A)),
where UDyy (A) represents the set of undominated alternatives in W. Thus, we
generate sets of undominated random alternatives, where each alternative is
defined as a vector of p rational numbers. In our experiments we have noticed
that filtering out the dominated elements is a very worthwhile preliminary step.
For example, generating 10 sets A with |A| = 25000 and p = 3 using our random
sets generator, we got an average of |[UDyy,(A)| = 52.4 alternatives.

In Table 1 we show the average computation time of SMMR@V(A) over 20
repetitions with k € {2,3}, p € {3,4}, and an input set of 50 undominated alter-
natives. Time SAT EPI and Time SAT LP indicate the average time in seconds
to compute SMMR{“/V(A) using the SAT solver, where we compute SMRyy (B, A)
using the epigraph of the value function and a linear programming solver respec-
tively. Time BF EPI and Time BF LP indicate the average time in seconds to
compute SMMR},(A) using the brute force algorithm, where also in this case
we compute SMRyy (B, A) using the epigraph of the value function and a linear
programming solver respectively. Thus, the results in the first column relate to
our best algorithm, and the results on the last column relate to the current state
of the art. As we can see, with our algorithm we get a very significant improve-
ment. Also, comparing EPI SAT with LP SAT, and EPI BF with LP BF, we
can see that the computation of the setwise max regret using the epigraph of
the value function seems to improve the performance with respect to the linear
programming method, but given the experimental results in [2], the LP method
is probably faster for p > 7.

Table 1: Average computation time of SMMR{“/V (A) over 20 repetitions varying
k and p with an input set of 50 undominated alternatives and W = U.

k[p[Time[s] EPI SAT|Time[s] LP SAT|Time[s] EPI BF|Time[s] LP BF
2[3 2.113 31.144 26.934 413.718
24 3.821 32.258 46.557 424.904
3[3 5.144 53.537 667.33 6739.028
3[4 10.956 64.403 1191.759 6922.825

In Table 2 and Table 3 we show the average timing of our algorithm vary-
ing the number of user preferences and the size of the undominated input sets
respectively. In both the tables we show also the average size of W' for the
corresponding experiments. Note that with & = 2 we compute optimal queries
represented by pairwise comparisons of alternatives that are often used in prefer-
ence elicitation systems (see, e.g., [18,1,14,12,13,15]). In Table 2, A represents
the set of (consistent) user preferences (corresponding to linear constraints on
the user preference space U), each being of the form aw; + bw; > cwy, for some
random constants a, b and c. Each set of constraints A therefore defines a sub-

14 Federico Toffano, Paolo Viappiani, and Nic Wilson

set W, of U, which is in fact a compact convex polytope. For example, the set
A could be elicited from a decision maker through a preference elicitation sys-
tem; (in an iterative elicitation process, A can be the constraints generated from
answers to earlier queries, and our algorithm generates an optimal next query
to ask). As we can see in Table 2, setting for example & = 2 and p = 4 with
|UDyw(A)| = 50, the computation time of S’MMR{‘,’VA (A) seems to be slightly
decreasing with respect to the number of user preferences increases. In Table 3
we show the time performance of our main algorithm with respect to the size
of the input set UDyy, (A) of undominated alternatives, growing approximately
linearly.

Table 2: Average computation time Table 3: Average computation time
of SMMR%,(A) over 20 repetitions of SMMRY,(A) over 20 repetitions

varying the number of user prefer- varying the size of the input set
ences A with [UDy,(A)| = 100, W = UDy(A) of undominated alterna-
U, k=2and p=4. tives with W=U, k=2, p=4.
H\UDWA (A)|‘|A|‘Time EPI SAT‘ W] H H|UDW(A)|‘Time EPI SAT‘ (W] H
53.25 2 9.9 386.2 100 6.8 397.2
23.7 4 5.5 130.8 150 12.1 710.3
21.85 6 9.2 138.6 200 17.8 906.6
12.25 8 8.5 74.5 250 24.1 1190.7
8.7 10 7.6 47.2 300 32.1 1435.1

In Figure 3 we show how our method scales with respect to k and p. The
y-axis represents the average timing of our algorithm with a logarithmic scale.
The x-axis represents the number of criteria p € {2,...,6}. Each line represents
the average time performance of 20 repetitions with an input set A of 50 undom-
inated alternatives and varying k € {2,...,5}. As we can see, the computational
times increases exponentially with respect to k, reflecting the exponential growth
of the number of subsets of A of cardinality k.

6 Conclusions

Interactive elicitation methods maintain a model of the user preferences that is
revised incrementally by recording the answers to questions asked to the decision
maker. In particular several works [30,8,10,6,7] have used (standard, single-
item) minimax regret to provide a robust recommendation to decision maker.

The notion of setwise regret [28, 29] allows one to provide a sound and princi-
pled approach for generating, based on the current uncertainty about the decision
maker’s value function, a set of alternatives 1) to used as a recommendation set,
and 2) to be used as a choice query to drive the elicitation forward.

Despite the attractiveness of setwise minimax regret, the high computational
burden of this approach has limited its adoption in applications. To address this

Efficient Exact Computation of Setwise Minimax Regret 15

t4

|
|
~ A~

102 4

t

Time

10!

100

2 3 4 5 6
P

Fig.3: Average computation time of SMMRS,(A) (y-axis) over 20 repetitions
varying k and p with an input set of 50 undominated alternatives and W = U.

issue, in this paper we provided an efficient algorithm to compute exactly the
setwise minimax regret for database problems, making use of a SAT solver to
prune the search; this is valuable for generating queries and recommendation
sets, to help a user find a most-preferred item in the database. Our algorithm
may replace heuristic approaches when the query size is fairly small, since the
complexity burden increases exponentially with respect to k. Note that in pref-
erence elicitation systems it is very common to ask binary queries, and with
k = 2 we compute an optimal binary query with respect to the minimax regret
criterion. Our approach could also be a starting point for new heuristic methods,
based on exploring just the most promising parts of the search space.

We validated our approach in numerical experiments that showed a very
substantial improvement with respect to the state of the art. Our implementation
gives a proof of concept, using an algorithm of quite a simple structure. However,
it can probably be speeded up a lot using various optimisations, and for example,
a parallel evaluation of different branches whilst keeping track of a common
upper bound.

Future works could involve testing our method in a preference elicitation
context with the purpose of evaluating the quality of queries for the DM with
respect to the setwise minimax regret criterion. Also, one could test the perfor-
mances of our algorithm using an initial upper bound of the setwise minimax
regret computed with an heuristic such as those in [28,29]. It would be interest-
ing also to explore a constraint programming approach for this problem, with
a global constraint replacing the call to the SAT solver, potentially enabling
propagation of literals to further reduce the search space.

16

Federico Toffano, Paolo Viappiani, and Nic Wilson

References

1.

o

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

Abbas, A.: Entropy methods for adaptive utility elicitation. IEEE Transactions on
Systems, Science and Cybernetics 34(2), 169-178 (2004)

Anonymous: Accepted paper, forthcoming (2020)

Benabbou, N., Di Diodoro, S.D.S., Perny, P., Viappiani, P.: Incremental preference
elicitation in multi-attribute domains for choice and ranking with the borda count.
In: International Conference on Scalable Uncertainty Management (SUM 2016).
pp. 81-95. Springer (2016)

Benabbou, N., Lust, T.: An interactive polyhedral approach for multi-objective
combinatorial optimization with incomplete preference information. In: Interna-
tional Conference on Scalable Uncertainty Management (SUM 2019). pp. 221-235.
Springer (2019)

Benabbou, N., Perny, P.: Incremental weight elicitation for multiobjective state
space search. In: Twenty-Ninth AAAT Conference on Artificial Intelligence (2015)
Benabbou, N., Perny, P., Viappiani, P.: Incremental elicitation of choquet capaci-
ties for multicriteria decision making. In: ECAL pp. 87-92 (2014)

Benabbou, N.; Perny, P., Viappiani, P.: Incremental elicitation of choquet capac-
ities for multicriteria choice, ranking and sorting problems. Artificial Intelligence
246, 152-180 (2017)

Boutilier, C., Patrascu, R., Poupart, P., Schuurmans, D.: Constraint-based op-
timization and utility elicitation using the minimax decision criterion. Artificial
Intelligence 170(8-9), 686-713 (2006)

Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge, England (2004)

Braziunas, D.: Decision-theoretic elicitation of generalized additive utilities. Ph.D.
thesis, University of Toronto (2012)

Braziunas, D., Boutilier, C.: Preference elicitation and generalized additive utility.
In: Proceedings of AAAI vol. 21 (2006)

Braziunas, D., Boutilier, C.: Minimax regret based elicitation of generalized addi-
tive utilities. In: Proceedings of UAI pp. 25-32 (2007)

Braziunas, D., Boutilier, C.: Assessing regret-based preference elicitation with the
utpref recommendation system. In: Proceedings of the 11th ACM conference on
Electronic commerce. pp. 219-228 (2010)

Gajos, K., Weld, D.S.: Preference elicitation for interface optimization. In: Pro-
ceedings of the 18th Annual ACM Symposium on User Interface Software and
Technology (UIST-05). pp. 173-182. Seattle, WA, USA (2005)

Guo, S., Sanner, S.: Real-time multiattribute Bayesian preference elicitation with
pairwise comparison queries. In: Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics, (AISTATS-10). pp. 289-296. Chia
Laguna Resort, Sardinia, Italy (2010)

Howard, R.A.: Information value theory. IEEE Transactions on Systems Science
and Cybernetics 2(1), 22-26 (1966)

ILOG, I.: IBM ILOG CPLEX Optimization Studio, V12.8.0 (2017)

Iyengar, V.S., Lee, J., Campbell, M.: Q-Eval: Evaluating multiple attribute items
using queries. pp. 144-153. Tampa, FL, USA (2001)

Kouvelis, P., Yu, G.: Robust discrete optimization and its applications, vol. 14.
Springer Science & Business Media (2013)

Lu, T., Boutilier, C.: Robust approximation and incremental elicitation in voting
protocols. In: Proceedings of the T'wenty-Second International Joint Conference on
Artificial Intelligence (IJCAI) (2011)

21.

22.

23.
24.

25.
26.

27.

28.

29.

30.

31.

Efficient Exact Computation of Setwise Minimax Regret 17

Price, R., Messinger, P.R.: Optimal recommendation sets: Covering uncertainty
over user preferences. In: Proceedings, The Twentieth National Conference on Ar-
tificial Intelligence and the Seventeenth Innovative Applications of Artificial Intel-
ligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA. pp. 541-548
(2005)

Salo, A.A., Hamalainen, R.P.: Preference ratios in multiattribute evaluation
(prime)-elicitation and decision procedures under incomplete information. IEEE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
31(6), 533-545 (2001)

Savage, L.J.: The foundations of statistics. Courier Corporation (1972)

Sinz, C.: Towards an optimal cnf encoding of boolean cardinality constraints. In:
International conference on principles and practice of constraint programming. pp.
827-831. Springer (2005)

Stoneback, R.: pysat 2.1.0 (2019), https://pypi.org/project/pysat/

Teso, S., Passerini, A., Viappiani, P.: Constructive preference elicitation by set-
wise max-margin learning. In: Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July
2016. pp. 2067-2073 (2016)

Troffaes, M.C.M.: pycddlib python wrapper for komei fukuda’s cddlib (2018),
https://pycddlib.readthedocs.io/en/latest/

Viappiani, P., Boutilier, C.: Regret-based optimal recommendation sets in conver-
sational recommender systems. In: Proceedings of the third ACM conference on
Recommender systems (RecSys). pp. 101-108. ACM (2009)

Viappiani, P., Boutilier, C.: On the equivalence of optimal recommendation sets
and myopically optimal query sets. Artificial Intelligence p. 103328 (2020)

Wang, T., Boutilier, C.: Incremental utility elicitation with the minimax regret de-
cision criterion. In: Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI). vol. 3, pp. 309-316 (2003)

White, C.C., Sage, A.P., Dozono, S.: A model of multiattribute decisionmaking and
trade-off weight determination under uncertainty. IEEE Transactions on Systems,
Man, and Cybernetics (2), 223-229 (1984)

