A Preliminary Case Study of Planning With
Complex Transitions: Plotting*

Jordi Coll!, Joan Espasa?, Ian Miguel?, and Mateu Villaret?

1 Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
jordi.coll@lis-lab.fr
2 School of Computer Science, University of St Andrews, St Andrews KY16 95X, UK
{jea20,ijm}@st-andrews.ac.uk
3 Departament d’Informatica, Matematica Aplicada i Estadistica
Universitat de Girona, E-17003 Girona, Spain
mateu.villaretQudg.edu

Abstract. Plotting is a tile-matching puzzle video game published by
Taito in 1989. Its objective is to reduce a given grid of coloured blocks
down to a goal number or fewer. This is achieved by the avatar character
repeatedly shooting the block it holds into the grid. Plotting is an exam-
ple of a planning problem: given a model of the environment, a planning
problem asks us to find a sequence of actions that can lead from an initial
state of the environment to a given goal state while respecting some con-
straints. The key difficulty in modelling Plotting is in capturing the way
the puzzle state changes after each shot. A single shot can affect multiple
tiles directly, and the grid is affected by gravity so numerous other tiles
can be affected indirectly. We present and evaluate a constraint model of
the Plotting problem that captures this complexity. We also discuss the
difficulties and inefficiencies of modelling Plotting in PDDL, the stan-
dard language used for input to specialised Al planners. We conclude by
arguing that AI planning could benefit from a richer modelling language.

1 Introduction

Plotting is a puzzle video game published by Taito in 1989 and ported to many
platforms. The objective of the game is to reduce a given grid of coloured blocks
to a goal number or fewer (Figure 1). This is achieved by the avatar character
repeatedly shooting the block it holds into the grid. It is called Flipull in Japan
as well as in versions for the Famicom and Game Boy, and Plotting elsewhere.
Plotting is an example of a planning problem: given a model of the environ-
ment, a planning problem asks us to find a sequence of actions that can lead
from an initial state of the environment to a given goal state while respecting
some constraints. Planning is an essential part of decision making, and therefore

* This work is supported by UK EPSRC EP/P015638/1 and EP/V027182/1, by the
MICINN/FEDER, UE (RTI2018-095609-B-100), by the French Agence Nationale de
la Recherche, reference ANR-19-CHIA-0013-01, and by Archimedes institute, Aix-
Marseille University.

2 J. Coll et al.

Fig. 1. Screen shot from the Plotting video game (Taito, 1989).

a central discipline of Artificial Intelligence (AI). Examples of its usage in indus-
try and academia are many and varied, such as logistics [16], chemistry [14] or
drilling operations [13].

In Plotting, we are trying to find a sequence of positions to fire from such
that enough blocks are removed to beat the current scenario. The game is played
by one agent, which has the full information of the state and the effects of each
action are deterministic. This situation helps into finding approaches to model
and solve the problem, and its similar to pen and paper puzzle games [7] or
board games such as peg solitaire [11] or the knight’s tour [1].

The Planning Domain Definition Language (PDDL) [9] is the de-facto stan-
dard modelling language for planning problems, supported by most planning
systems. Its widespread use started thanks to the collaborative efforts and de-
sire of the community to facilitate benchmarking and applications of planning
systems. When using PDDL, the user describes the problem in terms of pred-
icates, actions and functions with parameters. In turn, these parameters are
instantiated with a set of defined objects.

In this work we will show that modelling the complex dynamics of the game
in PDDL is not straightforward. The resulting complexity of the model hinders
the efficacy of planning systems to produce a valid plan. We also propose a
model of the game in Essence Prime [18], a declarative constraint modelling
language able to express planning problems [6]. Moreover, we take advantage of
Savile Row [17], a sophisticated constraint reformulation tool supporting Essence
Prime that is able to generate SAT and SMT [5], or CSP [21] instances.

Our contributions in this paper are: models for Plotting in Essence Prime
and PDDL, a parameterised instance generator, and an empirical evaluation of
the proposed Essence Prime model.

2 Background

A classical planning problem can be defined as a tuple [[= (F, A, I, G), where: F'
is a set of propositional state variables, A is a set of actions, I is the initial state

A Preliminary Case Study of Planning With Complex Transitions: Plotting 3

and G is the goal. Given a planning problem [], a state is a variable-assignment
(or valuation) function over state variables F', which maps each variable of F
into a truth value.

An action a € A is defined as a tuple a = (Preq, Eff ,), where Pre, refers
to the preconditions and Eff, to the effects of the action. Preconditions (Pre)
and the goal G are first-order formulas over propositional state variables. Action
effects (Eff) are sets of assignments to propositional state variables.

An action a is applicable in a state s only if its precondition is satisfied in s
(s = Pre,). The outcome after the application of an action a will be the state
where variables that are assigned in Eff, take their new value, and variables not
referenced in Eff , keep their current values. A sequence of actions {ag, . .., aGn—1)
is called a plan. We say that the application of a plan starting from the initial
state I brings the system to a state s,. If each action is applicable in the state
resulting from the application of the previous action and the final state satisfies
the goal (i.e., s, = G), the sequence of actions is a a wvalid plan. A planning
problem has a solution if a valid plan can be found for the problem.

2.1 Planning as Satisfiability

In contrast with games such as peg solitaire [11], we cannot a priori compute
the length of the plan. When encoding a planning problem into CP or SAT, it is
common in this situation [12, 3, 15] to solve the planning problem by considering
a sequence of satisfaction problems ¢q, ¢1, @2, ..., where ¢; encodes the existence
of a plan that reaches a goal state from the initial state in 7 steps.

In constructing each ¢, we take the common approach [11,8] of formulat-
ing a “state and action” constraint model of the planning problem, where we
employ decision variables to capture both the state of the puzzle at each time
step and the action taken to transform the preceding into the succeeding state.
Constraints ensure that when an action is executed, its preconditions hold with
respect to the problem variables and that its effects are applied and the state
is modified accordingly. Constraints on the variables representing the state of
the final step require that the goal conditions are met. Finally, frame axioms
are made explicit, i.e. constraints that specify that if no action has modified a
variable, it keeps its value between steps. Semantics such as the V or 3-step [20]
allow parallel actions, but here just one action will be executed per time step.

3 Plotting

The objective in Plotting is to reduce a given grid of coloured blocks down to a
goal number or fewer. This is achieved by the avatar character shooting the block
it holds into the grid, either horizontally directly into the grid, or by shooting
at the wall blocks above the grid, and bouncing down vertically onto the grid.
The rules for what happens when a block hits the wall are as follows:

— If it hits a wall as it is travelling horizontally, it falls vertically downwards.
Note that in some levels, additional walls are arranged to facilitate hitting

4 J. Coll et al.

the blocks from above. This arrangement varies with instances of the puzzle
— in harder instances wall cells are placed so as to prevent throwing blocks
along some rows and columns.

— If it falls onto a wall, it rebounds into the avatar’s hand.

The rules for a shot block S colliding with a block B in the grid:

— If the first block S hits is of a different type from itself, S rebounds into the
avatar’s hand and the grid is unchanged — a null move.

— If S and B are of the same type, B is consumed and S continues to travel
in the same direction. All blocks above B fall one grid cell each.

— If S, having already consumed a block of the same type, hits a block B of a
different type, S replaces B, and B rebounds into the avatar’s hand.

The combination of the second and third rules above means that it is possible
to shoot through an entire row of the grid, hit the wall, and continue to consume
blocks as the shot block falls. If, after making a shot, the block that rebounds
into the avatar’s hand is such that there is now no possible shot that can further
reduce the grid, the player loses a life and the block in the avatar’s hand is
transformed into a wildcard block, which transforms into the same type as the
first block it hits. Each level also begins with the avatar holding a wildcard block.

When considered as a planning problem, Plotting’s initial state is the given
grid, and there are usually multiple goal states where the grid is sufficiently
reduced to meet the target. We abstract out the avatar’s movement to consider
the key decisions: the rows or columns chosen at which to shoot the held blocks.
Therefore, the sequence of actions to get us from the initial to the goal state is
comprised of individual shots at the grid, either horizontally or vertically.

4 Constraint Model in Essence Prime

Rendl et al. [19] provide a brief description of an incomplete constraint model
of Plotting. We give here a full description of a complete model of the problem,
formulated in a state and action style, as noted in Section 2.1. Here, the state is
the current grid configuration and the contents of the hand of the avatar, and
the single action is a shot along a particular row or column.

4.1 Preliminaries: Constants and Parameters

Each block type is identified with a colour, and the colours are represented by
a contiguous range of natural numbers in Essence Prime. We use 0 to represent
an empty grid cell. Step 0 will represent the initial state, with the action chosen
at step 1 transforming the initial state into the state at step 1, and so on. The
parameters and constants for the model are therefore:
given initGrid : matrix indexed by[int(1..gridHeight), int(1..gridWidth)] of int(1..)
letting GRIDCOLS be domain int(1..gridWidth)

letting GRIDROWS be domain int(1..gridHeight)
letting NOBLOCKS be gridWidth * gridHeight

A Preliminary Case Study of Planning With Complex Transitions: Plotting 5

letting COLOURS be domain int(1..max(flatten(initGrid)))
letting EMPTY be O
letting EMPTYANDCOLOURS be domain int(EMPTY) union COLOURS

given goalBlocksRemaining : int(1..NOBLOCKS)
given noSteps : int(1..)

letting STEPSFROM1 be domain int(1..noSteps)
letting STEPSFROMO be domain int(O..noSteps)

4.2 Basic Viewpoint

We capture the current state of the grid and the contents of the avatar’s hand
at each time step with a time-indexed 2d array of decision variables and an
individual variable per time step respectively. Only one action is possible per
time step, which is the decision as to where to fire the block held. Here we
introduce a pair of variables per time step, one representing the column fired
down (if any) and one representing the row fired along (if any):

find fpRow : matrix indexed by[STEPSFROM1] of int(0..gridHeight)

find fpCol : matrix indexed by[STEPSFROM1] of int(O..gridWidth)

find grid : matrix indexed by [STEPSFROMO, GRIDROWS, GRIDCOLS]
of EMPTYANDCOLOURS

find hand : matrix indexed by[STEPSFROMO] of COLOURS

There is also a set of auxiliary variable to support the special case of when a
block consumes an entire row and then falls through more blocks on the rightmost
column. We will return to these later.

4.3 Initial, Goal States

The initial state is as simple as constraining the Oth 2d array of grid to be equal
to the parameter initGrid. The goal state is expressed simply by counting the
number of empty grid cells:

$ Initial state:
forAll gCol : GRIDCOLS .
forAll gRow : GRIDROWS .
grid[0, gRow, gCol]l = initGrid[gRow, gColl],
$ Goal state:

atleast(flatten(grid[noSteps,..,..1),
[NOBLOCKS - goalBlocksRemaining],
[EMPTY]),

4.4 Constraining the Actions

Having transformed Plotting into a decision problem that asks if there is a plan
for with a fixed number of steps, we might take the view that moves that don’t
alter the state of the puzzle (e.g. firing the held block straight into one of a
different colour) might be used to “pad” a short plan to the given length. We
decided that this was of little benefit and otherwise could lead to redundant
search, and so disallowed moves that don’t progress the solution of the puzzle
with the following sum constraint:

6 J. Coll et al.

$ Each move must do something useful:
forAll step : STEPSFROM1 .
sum(flatten(grid[step-1,..,..]1)) > sum(flatten(grid[step,..,..1)),

This does mean care will be necessary with our frame constraints, as we
discuss in Section 4.5 below. Any cell unconstrained will be vulnerable to the
constraint solver assigning an arbitrary (low-numbered) colour so as to satisfy
the sum constraint above.

The other constraint we consider here is to say that we must fire horizontally
or vertically but not both:

$ Exactly one fp axis must be 0. (exclusive OR, only ONE fired angle)
forAll step : STEPSFROM1 .
(fpRow[step] * fpCol[step]) = 0 /\ (fpRow[step] + fpCol[step]) > O,

4.5 Constraining State

There remain the constraints specifying valid state changes. These are all stated
in an if-and-only-if form to ensure that no part of the state (hand or grid) is left
unconstrained and therefore vulnerable to the solver assigning arbitrary values.
These constraints are subdivided into four cases:

. The hand is unchanged.

. A grid cell becomes empty.

. A grid cell stays the same.

. A grid cell changes colour to something other than empty. This can affect the hand.

=W N =

Some of these interact with the special case that was missing from the Rendl
et al. model (i.e. a block is fired horizontally, hits the wall and falls, continuing
to consume blocks). The references to “wallFall”, which is explained in the next
section, are related to this. The wallFall value records how many cells a block
undermined by the special case situation will fall in the last column.

There are two cases in which the hand is unchanged when we require a
progressing move. The first is firing down a column containing only the same
colour blocks as the block fired. The second is along a row of the same colour,
hitting the wall, then consuming everything beneath it on that rightmost column
before hitting the floor:

forAll step : STEPSFROM1 .
(hand[step-1] = hand[step])
(
$ Fired down col, hitting wall
(
(forAll colBlock : GRIDROWS .
((grid[step-1,colBlock,fpCol [step]]
(grid[step-1,colBlock,fpCol[step]l]

hand[step-1]) \/
EMPTY))

)
) \/
$ Fired row, hitting wall, dropping through hand-colour only.
(

$ along the row

(

forAll rowBlock : GRIDCOLS .
((grid[step-1,fpRow[step] ,rowBlock] = hand[step-11) \/

A Preliminary Case Study of Planning With Complex Transitions: Plotting 7

(grid[step-1,fpRow[step] ,rowBlock] = EMPTY))
/\
d

own the column

~ &8

forall rowBeneath : GRIDROWS .
(rowBeneath > fpRow[step] ->
((grid[step-1,rowBeneath,gridWidth] = hand[step-1]) \/
(grid[step-1,rowBeneath,gridWidth] = EMPTY))
DADEDED N

There are six cases governing how a grid cell becomes empty, including the
trivial case of it being empty at the previous time step:

forAll step : STEPSFROM1 .
forAll gRow : GRIDROWS .
forAll gCol : GRIDCOLS .
(grid[step,gRow,gCol] = EMPTY)
($ When a cell is EMPTY, it stays EMPTY
(grid[step-1,gRow,gCol] = EMPTY) \/
$ Deleted by shot down column
(
$ The right column
(fpCol[step] = gCol) /\
$ same colour as hand
(grid[step-1,gRow,gCol] = hand[step-11) /\
$ Nothing blocking the way
(forAll blockAbove : int(1l..gRow-1)
((grid[step-1,blockAbove,fpCol[step]] hand[step-11) \/
(grid[step-1,blockAbove,fpCol[step]] = EMPTY))

)
\/ $ Deleted by shot along row

~

$ The right row

(fpRow[step] = gRow) /\

$ same colour as hand

(grid[step-1,gRow,gCol] = hand[step-11) /\

$ no block above

((gRow = 1) \/
(grid[step-1,gRow-1,gCol] = EMPTY)) /\

$ nothing blocking way

(forAll blockLeft : int(1..gCol-1) .
((grid[step-1,gRow,blockLeft] = hand[step-1]) \/

(grid[step-1,gRow,blockLeft] = EMPTY))
)
\/ $ Deleted by shot along row, then down col

~

$ Only the final column
(gCol = gridWidth) /\
$ fpRow is above this
(fpRow[step]l < gRow) /\
$ same colour as hand
(grid[step-1,gRow,gridWidth] = hand[step-1]) /\
$ Nothing blocking the way on the row
(forAll rowBlock : int(l..gridWidth)
((grid[step-1,fpRow[step] ,rowBlock] = hand[step-11) \/
(grid[step-1,fpRow[step] ,rowBlock] = EMPTY))
DAVAN
$ Nothing blocking the way on the final column
(forAll colBlock : int(1..gRow-1)
(colBlock > fpRow[stepl) ->
((grid[step-1,colBlock,gridWidth] = hand[step-1]) \/
(grid[step-1,colBlock,gridWidth] = EMPTY))
) /\
$ Empty above the firing row on the final column
(forAll colBlock : int(1l..gRow-1)
(colBlock < fpRow[step]) ->
(grid[step-1,colBlock,gridWidth] = EMPTY)

8 J. Coll et al.

)
) \/ $ Fall from this cell to become empty - row shot underneath
(

$ There was no block above

((grid[step-1,gRow-1,gCol] = EMPTY) \/
(gRow = 1)) /\

$ Deletion below

(fpRow[step]l > gRow) /\

(forAll delBlock : int(1..gCol)
((grid[step-1,fpRow[step] ,delBlock] = hand[step-1]) \/

(grid[step-1,fpRow[step] ,delBlock] = EMPTY)))
\/
F

inal Column shot along a row consuming several blocks underneath

—~ €~

$ Only the final column
(gCol = gridWidth) /\
$ There was a wallfall - this implies a successful row shot.
(wallFall[step]l > 0) /\
$ The shot was beneath here
(fpRow[step] > gRow) /\
$ Nothing there to fall into here
(grid[step-1,gRow-wallFall[step],gridWidth] = EMPTY \/
gRow-wallFall[step] < 1)

AP

There are 9 cases governing how a grid cell can remain the same. The test is
simple equality, so we have to include emptiness here:

forAll step : STEPSFROM1 .
forAll gRow : GRIDROWS .
forAll gCol : GRIDCOLS .
(grid[step,gRow,gCol] = grid[step-1,gRow,gColl)
($ It was empty
(grid[step-1,gRow,gCol] = EMPTY) \/
$ Fired beneath this row, not far enough to cause fall:
(
(fpRow[step] > gRow) /\
(exists blockLeft : int(1..gCol)
((grid[step-1,fpRow[step] ,blockLeft] != EMPTY) /\
(grid[step-1,fpRow[step] ,blockLeft] != hand[step-1]))
)
\/ $ Fired along this row, but something in the way

~

(fpRow[step]l = gRow) /\
(exists blockLeft : int(1l..gCol-1)
((grid[step-1, gRow, blockLeft] != EMPTY) /\
(grid[step-1, gRow, blockLeft] != hand[step-1]))
)

\/ $ Fired along row above, cols except last

~

(gCol < gridWidth) /\
(fpRow[step] !'= 0) /\
(fpRow[step] < gRow)
\/

Fired along row above, last col. Sth in way on row or last col.

—~ €~

(gCol = gridWidth) /\
(fpRow[step] !'= 0) /\
(fpRow[step]l < gRow) /\
(
(exists rowBlock : int(1..gridWidth)
((grid[step-1, fpRow[step], rowBlock] != EMPTY) /\
(grid[step-1, fpRow[step], rowBlock] != hand[step-1]))
) \/
(exists colBlock : int(1l..gRow-1)
((colBlock >= fpRow[step]) /\
(grid[step-1, colBlock, gridWidth] != EMPTY) /\

A Preliminary Case Study of Planning With Complex Transitions: Plotting

(grid[step-1, colBlock, gridWidth] != hand[step-1]))
)
)
\/

Fired down this column, but something in way

~ P~

(fpCollstep]l = gCol) /\
(exists blockAbove : int(1..gRow-1)
((grid[step-1,blockAbove,gCol] != EMPTY) /\
(grid[step-1,blockAbove,gCol] != hand[step-1])))
\/

Fired down a different column

—~ ¥~

(fpCol[step] !'= 0) /\
(fpCol[step] !'= gCol)
\/

This row or below. Same colour block falls here. All but last col.

—~ &8~

(gCol < gridWidth) /\

(fpRow[step] >= gRow) /\

(forAll delBlock : int(1..gCol)
((grid[step-1,fpRow[step],delBlock] = hand[step-1]) \/
(grid[step-1,fpRow[step] ,delBlock] = EMPTY))) /\

(grid[step-1,gRow-1,gCol] = grid[step-1,gRow,gColl)

\/

This row or below. Same colour block falls here. Last col.

~ &®

(gCol = gridWidth) /\
(fpRow[step] >= gRow) /\
(wallFall[step] > 0) /\
(grid[step-1,gRow-wallFall[step],gCol] = grid[step-1,gRow,gColl)
)
),

Finally, five cases for a grid cell changing to something other than empty:

forAll step : STEPSFROM1 .
forAll gRow : GRIDROWS .
forAll gCol : GRIDCOLS .
((grid[step,gRow,gCol] != grid[step-1,gRow,gColl) /\
(grid[step,gRow,gCol] != EMPTY))

(
$ Fall from above. Not rightmost col.
(
(gCol < gridWidth) /\
$there was a block above
(grid[step-1,gRow-1,gCol] != EMPTY) /\
$Deletion here or below
(fpRow[step] >= gRow) /\
(forAll delBlock : int(1..gCol)
((grid[step-1,fpRow[step] ,delBlock] = hand[step-1]) \/
(grid[step-1,fpRow[step] ,delBlock] = EMPTY))) /\
$ Is now the same as the block above.
(grid[step,gRow,gCol] = grid[step-1,gRow-1,gColl) /\
$ Which was a different colour
(grid[step-1,gRow,gCol] != grid[step-1,gRow-1,gColl)
\/
Fall from above. Rightmost col.

—~ &®

(gCol = gridwidth) /\

$ WallFall implies successful row shot
(wallFall[step] > 0) /\

$ Shot here or below

(fpRow[step] >= gRow) /\

$ Is now the same as the block above
(grid[step,gRow,gridWidth] =
grid[step-1,gRow-wallFall [step],gridWidth]) /\

10 J. Coll et al.

$ Which was a different colour
(grid[step-1,gRow,gridWidth] !=
grid[step-1,gRow-wallFall[step],gridWidth])
\/

Cell swaps with hand: row shot.

~ P~

(gRow = fpRow[stepl) /\

$ The row shot

(forAll colsLeft : int(1..gCol-1)
(grid[step-1,fpRow[step]l,colsLeft] = hand[step-1]) \/
(grid[step-1,fpRow[step],colsLeft] = EMPTY)) /\

$ At least one cell has to match the hand

(exists colsLeft : int(1l..gCol-1)
(grid[step-1,fpRow[step],colsLeft] = hand[step-11)) /\

$ Exchanges with the hand

(hand[step] = grid[step-1,fpRow([step],gCol]) /\

(hand[step-1] = grid[step,fpRow[stepl,gColl) /\

$ Which was a different colour

(hand[step-1] != grid[step-1,fpRow[step],gCol])

\/

Cell swaps with hand: col shot

—~ &®

(gCol = fpCollstepl) /\

$ The col shot

(forAll rowsAbove : int(1..gRow-1)
(grid[step-1,rowsAbove,fpCol[step]] = hand[step-1]) \/
(grid[step-1,rowsAbove,fpCol[step]] = EMPTY)) /\

$ At least one cell has to match the hand

(exists rowsAbove : int(1..gRow-1)
(grid[step-1,rowsAbove,fpCol[step]] = hand[step-1])) /\

$ Exchanges with the hand

(hand[step] = grid[step-1,gRow,fpCollstepl]l) /\

(hand[step-1] = grid[step,gRow,fpCol[stepl]l) /\

$ Which was a different colour

(hand[step-1] != grid[step-1,gRow,fpCol[stepl])

\/

Cell swaps with hand: row then down last col.

—~ €~

$ rightmost col
(gCol = gridWidth) /\
$ fpRow is above this
(fpRow[step] < gRow) /\
$ Nothing blocking the way on the row
(forAll rowBlock : int(1..gridWidth-1)
((grid[step-1,fpRow[step] ,rowBlock] = hand[step-1]) \/
(grid[step-1,fpRow[step]l,rowBlock] = EMPTY))
DAVAN
$ Nothing blocking the way on the final column
(forAll colBlock : int(1..gRow-1)
(colBlock >= fpRow[stepl) ->
((grid[step-1,colBlock,gridWidth] = hand[step-1]) \/
(grid[step-1,colBlock,gridWidth] = EMPTY))
DAVAN
$ But there must exist one hand block on firing row or final col.
((exists rowBlock : int(1..gridWidth-1)
grid[step-1,fpRow[step] ,rowBlock] = hand[step-1]1)
\/
(exists colBlock : int(1..gRow-1)
colBlock >= fpRow[step] /\
grid[step-1,colBlock,gridWidth] = hand[step-11)
DAVAN
$ Exchanges with hand
(hand[step] = grid[step-1,gRow,gridWidth]) /\
(hand[step-1] = grid[step,gRow,gridWidth]) /\
$ Which was a different colour
(hand[step-1] != grid[step-1,gRow,gridWidth])

A Preliminary Case Study of Planning With Complex Transitions: Plotting 11

4.6 WallFall

As is evident from the main constraints in the previous section, we have intro-
duced a set of variables (one per time step) to capture the distance that blocks in
the last column fall as a consequence of a block being shot horizontally, reaching
the wall, and then optionally consuming blocks as it falls down the last column:

find wallFall : matrix indexed by [STEPSFROM1] of int(0..gridHeight)

The constraints to make the calculation enumerate each possible value for
the wallFall variable and stipulate what must be true for that value to be valid:

forAll step : STEPSFROM1 .
forAll i : int (1..gridHeight) .
(wallFall[step] = i)

(exists row : int(2..gridHeight) .

(fpRow[step]l = row) /\

$ Consumed row to the rightmost column

(forAll col : int(1..gridWidth) .
grid[step-1,row,col] EMPTY \/
grid[step-1,row,col] = hand[step-11) /\

$ Something to fall

(grid[step-1,row-1,gridWidth] != EMPTY) /\

$ Fell this far

(forAll underRow : int (row..row+i-1) .
grid[step-1,underRow,gridWidth] = hand[step-1]) /\

$ And no further

((grid[step-1,row+i,gridWidth] != hand[step-1]) \/
(row+i > gridHeight))

),

5 Model in PDDL

PDDL [9] is an expressive modelling language, able to encode many real-life
problems with complex dynamics. In spite of that, the complexity of its many
features resulted in most Al planners lagging behind, supporting only a small
core set of features. Fast Downward [10] is the most well-known, supported and
reused state-of-the-art planner. Its preprocessing module performs sophisticated
transformations from PDDL to the more solver-amenable SAS+ format [2]. This
preprocessor is currently used by many of the state-of-the-art planners. There-
fore, we focus on modeling the Plotting problem using a subset of features sup-
ported by Fast Downward. This implies that we cannot natively use numeric
state variables, multi-valued variables nor function symbols.

PDDL is action-oriented, in the sense that a PDDL model defines what are
the possible actions to do at each step. Also for each action, we must define
the precondition over the state of the previous time step required to perform
the action, and what is the effect over the state when that action is done.
This contrasts with the Essence Prime model given in Section 4, that we might
say that is state-oriented: we add a constraint for each possible change of state,
requiring that this change is coherent with the state at the previous time step
and the chosen action.

We have designed a PDDL model that can be found in Appendix B. In this
section we provide some pieces of the model in order to illustrate the drawbacks

12 J. Coll et al.

of using this fragment of PDDL. The viewpoint uses two types of objects: colour
and number. Note that number will be the name of a type that we will use to
manually encode the basic required numerical properties. The predicate hand
has one colour parameter and encodes if the avatar is holding the given colour.
The coloured predicate expresses, given a row, column and colour, if the block
is coloured in the given colour.

(hand ?c - colour)
(coloured ?row ?col - number ?c - colour)

A few auxiliary predicates such as islastcolumn or isbottomrow are added
to make the model easier to read and remove the usage of as many quantifiers
as possible.

(isfirstcolumn ?n - number)
(islastcolumn ?n - number)
(istoprow ?n - number)
(isbottomrow ?n - number)

In Plotting, an essential requirement is the use of numbers in counting and
calculation. For example, it is required to be able to refer to a specific cell in
the grid or to calculate how many positions a cell has to fall after removing part
of a column. Although important, numeric planning is not widely supported.
Therefore, we need to encode some integer relations as Boolean predicates:

(succ ?pl ?p2 - number) ; pl is successor of p2
(1t 7pl ?p2 - number) ; pl is less than p2
(distance ?pl 7p2 ?p3 - number) ; p3 is p2 - pil

Those are the successor and < operators and the distance between two num-
bers. Notice that, these predicates will have to be defined in each instance file,
along the specific scenario information. For instance when dealing with a 5 x 5
board we need to state succ for every pair of successive numbers between 1 and
5, and 1t and distance for every pair of two numbers (p1,p2) between 1 and 5
such that pl < p2. In Figure 2 we provide an excerpt of the action consisting of
partially removing cells of color ?c in row ?r until column 7t, i.e. not reaching
the last column.

The lack of multi-valued variables in the considered fragment of PDDL makes
the encoding of some transitions not ideal. For example, when changing the
colour held by the avatar we generally need to state: remove any previous colour
in the hand and set the new colour. This is done in lines 33-34. However, having
multi-valued variables would make this change straightforward and less error-
prone. Moreover, due to the lack of support for function symbols in the con-
sidered PDDL fragment, we are forced to add extra quantifiers to the model to
be able to name specific objects. For instance, the column of the cell next to
7t (?nextcolumn) and its colour (?nextcolour) have to be discovered in the
effects of formula. This quantification is introduced in line 25, and the values of
?nextcolumn and ?nextcolour are discovered in lines 26-29 as a condition for
the effect to take place.

OOk WK~

A Preliminary Case Study of Planning With Complex Transitions: Plotting 13

(:action shoot—partial—row
;3 7r — what row we are shooting at
;3 7t — to, the ”limiting” cell
;3 Tc — the colour of the range we are removing
:parameters (?r — number 7t — number ?c — colour)
:precondition
(and
;3 Tcol is the successor of 7t with a different colour than 7c
(exists (?col — number)
(and (succ ?col ?7t)
(not (coloured ?r ?col ?c))
(not (coloured ?r ?col null))))

;; all the blocks up to 7t have either the colour ?c or are null
(forall (?col — number)
(or (1t 7t ?col)
(and (= ?col 7t) (coloured ?r 7t ?c))
(or
(coloured ?r ?col ?c¢)
(coloured ?r ?col null)))))
:effect
(and
;; Change hands colour and
;; The next cell that we cannot remove gets the colour from the hand
(forall (?nextcolumn — number ?nextcolour — colour)
(when
(and
(succ Tnextcolumn 7t)
(coloured ?r ?nextcolumn ?nextcolour))
(and
(not (coloured ?r ?nextcolumn ?nextcolour))
(coloured ?r ?nextcolumn ?c)
(hand ?nextcolour)
(not (hand ?c¢)))))

;; finally move everything downwards.

)

Fig. 2. Fragment of the action shoot-partial-row of the the PDDL model.

Note that if we could use function symbols and arithmetic, we could remove
variables ?nextcolumn and 7nextcolour. We would only have to change the
coloured symbol to be a function that, given a row and column it would map
to the colour in that cell. Overall, lines 25-34 could theoretically be simplified
as:

(assign (hand (coloured ?r (7t + 1))))
(assign (coloured 7r (7t + 1)) 7c)

Note that the Essence Prime language naturally deals with this kind of state-
ments, and in fact similar statements are used in the model given in Section 4.
Assuming we have hand and coloured variables indexed by time step, the equiv-
alent in Essence Prime would be:

hand[step]=coloured[step-1] [r][t+1] /\ coloured[step] [r] [t+1]=c

Finally, we will need to define the initial and goal states for every instance.
The initial state can be straightforwardly stated with a coloured statement for

14 J. Coll et al.

each cell. However, the goal state is more complex to express if we do not have
arithmetic nor aggregate functions that let us count the number of cells coloured
with null. In our instances we define the goal as follows. Let g be the maximum
allowed number of non-null cells in order to satisfy the goal state. We require
that there exist g different cells such that any other cell is null. For instance,
requiring at most 2 non-null cells creates the following statement:

(:goal ;; at most 2 cells are not null, i.e., g=2
(exists (?x1 ?x2 7yl ?y2 - number)
(and
(or ;; cell 1 != cell 2.
(not (= 7x1 ?7x2))
(not (= 7yl ?y2)))
(forall (7x3 7y3 - number)
(or ; Or is omne of cell 1 or cell 2, or is null
(and (= 7x1 ?7x3) (= 7yl ?7y3))
(and (= ?x2 7x3) (= ?7y2 7y3))
(coloured ?7x3 ?y3 null))))))

The length of this goal is ©(g?), since the g cells must be pair-wise different.
Again, this would be easier to do with Essence Prime, where we could add an
atleast global constraint like the one in the given Essence Prime model.

Note that the viewpoint of the presented PDDL model is similar to the one
presented in the Essence Prime model of Section 4, that is, hand plays a similar
role in both cases, and the coloured predicate defines the same information than
grid. We leave as future work comparing the given state-oriented Essencie Prime
model with an action-oriented Essence Prime model, which would be similar to
an ideally compacted version of the proposed PDDL model.

6 Empirical Evaluation

In this section we evaluate the performance of our constraint and PDDL models
of Plotting. To facilitate this study, we developed a simple instance generator
parameterised on the dimensions of the grid and the number of different colours.
It can produce all instances with those parameters, or a random single instance.

For our experimental setup, we use Savile Row [17] 1.9.0 with CaDiCaL [4]
as its backend solver and the Fast Downward [10] 20.06+ planner. Experiments
are executed in a AMD Opteron® Processor 6272, and each process was given
a limit of 4GB of memory and 1-hour timeout.

As presented in Table 1, we have generated squared instances of n x n cells,
for n from 5 to 9, and for each n we consider 3, 4 and 5 colours, going beyond
the scenarios proposed by the original game. Moreover, each instance has been
replicated with a different goal number of non-empty cells g from 0 to n? — 1.
Finally, recall from Section 2.1 that we consider a sequence of decision instances
from 1 to n? —g. Therefore, count column shows the number of decision instances
obtained with all different goals and all different number of time steps.

The extensive use of quantifiers and the complex conditional effects in the
PDDL model are a heavy burden for Fast Downward. The planner is not able
to pre-process the PDDL model of sizes greater than 3 within the time-out

A Preliminary Case Study of Planning With Complex Transitions: Plotting 15

n colours count|% solved SAT UNSAT |pre-processing solving
5 3 325 098 163 156 37.43 28.63

5 4 325 1.00 132 193 37.26 127.34
5 5 325 1.00 25 300 44.69 0.81

6 3 666 | 0.96 377 264 103.35 89.74

6 4 666 | 0.93 336 281 94.81 137.07
6 5 666 093 291 331 91.13 163.92
7 3 1225| 0.68 426 413 141.68 132.35
7T 4 1225| 0.66 392 417 135.88 175.60
7T 5 1225 0.64 263 526 126.20 217.87
8 3 2080 0.40 291 550 136.58 164.88
8 4 2080| 0.40 251 576 134.37 174.88
8 5 2080 | 0.41 172 689 141.68 224.32
9 3 3321 027 158 735 157.28 115.68
9 4 3321 0.27 142 740 155.80 148.40
9 5 3321 0.27 128 758 157.94 163.23

Table 1. Summarised results of the considered sets of instances using Savile Row.
Column n represents the width and height of the instances. pre-processing and solving
columns show the mean running time of each step, in seconds.

and therefore none of the considered PDDL instances could be solved. Table 1
summarises the obtained results with the Essence Prime model. As expected,
the more colours in the problem the harder it becomes. When arriving to 9
by 9 problems, Savile Row is only able to solve trivial instances and the rest
exceed the allowed memory threshold. In terms of steps, we are able to see
solved instances up to 33 steps for easy problems. If we consider the increasing
sequence of satisfiability questions for each instance, we observe that in most
cases the cost of pre-processing (i.e. Savile Row) grows linearly, while CaDiCal.
exhibits a classical phase transition around the first satisfiable problem.

7 Conclusions and Further Work

Using Essence Prime and PDDL, we have presented two models for the tile-
matching Plotting video game. Savile Row with CaDiCalL is able to solve much
bigger instances than the ones found in the game, while Fast Downward is not
able to preprocess non-trivial instances. Both models capture the complex state
transitions between steps in the puzzle. Since Essence Prime is a more expressive
language, key points in the model are much easier to encode. Native constructs
for Essence Prime to express planning-specific primitives would further help into
making the encoding of planning problems easier and more natural.

On the other hand, the lack of support of some crucial PDDL features such
as multi-valued variables, functional symbols and numeric reasoning makes the
modelling of problems with complex transitions a cumbersome and error-prone
process. Better support for these would not only motivate the introduction of
new problems but more crucially open the possibility of new solving techniques.

16

J. Coll et al.

References

10.

11.

12.
13.

14.

15.
16.

17.

Akgiin, 0., Gent, LP., Jefferson, C., Miguel, I., Nightingale, P., Salamon, A.Z.:
Automatic discovery and exploitation of promising subproblems for tabulation. In:
Principles and Practice of Constraint Programming - 24th International Confer-
ence, CP. vol. 11008, pp. 3-12 (2018). https://doi.org/10.1007/978-3-319-98334-9_1
Béckstrom, C., Nebel, B.: Complexity Results for SAS+ Planning. Comput. Intell.
11, 625-656 (1995). https://doi.org/10.1111/1.1467-8640.1995 th00052.x

van Beek, P., Chen, X.: CPlan: A Constraint Programming Approach to Planning.
In: Sixteenth National Conference on Al and Eleventh Conference on Innovative
Applications of Al pp. 585-590 (1999)

Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCal., Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Jarvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 — Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51-53. University of Helsinki (2020)
Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability,
vol. 326. I0S press (2021)

. Espasa, J., Miguel, 1., Coll, J., Villaret, M.: Towards lifted encodings for numeric

planning in essence prime. Proceedings of the 18th International Workshop on
Constraint Modelling and Reformulation (ModRef) (2019)

Espasa Arxer, J., Gent, I.P., Hoffmann, R., Jefferson, C., Mcllree, M.J., Lynch,
A.M.: Towards generic explanations for pen and paper puzzles with MUSes. In:
Proceedings of the SICSA eXplainable Artifical Intelligence Workshop (2021)
Gent, I.P., Jefferson, C., Kelsey, T., Lynce, 1., Miguel, 1., Nightingale, P., Smith,
B.M., Tarim, S.A.: Search in the patience game’black hole’. AT COMMUNICA-
TIONS 20(3), 211 (2007)

Haslum, P., Lipovetzky, N., Magazzeni, D., Muise, C.: An Introduction to
the Planning Domain Definition Language. Synthesis Lectures on Artificial
Intelligence and Machine Learning, Morgan & Claypool Publishers (2019).
https://doi.org/10.2200/S00900ED2V01Y201902AIM042

Helmert, M.: The Fast Downward Planning System. J. Artif. Intell. Res. 26, 191—
246 (2006). https://doi.org/10.1613/jair.1705

Jefferson, C., Miguel, A., Miguel, I., Tarim, A.: Modelling and solv-
ing english peg solitaire. Comput. Oper. Res. 33(10), 2935-2959 (2006).
https://doi.org/10.1016/j.cor.2005.01.018

Kautz, H.A., Selman, B.: Planning as Satisfiability. In: ECAI pp. 359-363 (1992)
Long, D.: Drilling down: Planning in the field. Invited Talk, Twenty-Ninth Inter-
national Conference on Automated Planning and Scheduling, (ICAPS), Berkeley,
CA, USA (2019)

Masoumi, A., Antoniazzi, M., Soutchanski, M.: Modeling Organic Chemistry
and Planning Organic Synthesis. In: Global Conference on Artificial Intelligence
(GCAI). pp. 176-195 (2015)

Miguel, I., Jarvis, P., Shen, Q.: Flexible graphplan. In: ECAI pp. 506-510 (2000)
Niemueller, T., Karpas, E., Vaquero, T., Timmons, E.: Planning competition for lo-
gistics robots in simulation. In: Workshop on Planning and Robotics (PlanRob) at
International Conference on Automated Planning and Scheduling (ICAPS) (2016)
Nightingale, P., Akgiin, 0., Gent, LP., Jefferson, C., Miguel, I., Spracklen, P.:
Automatically improving constraint models in Savile Row. Artificial Intelligence
251, 35-61 (2017)

A Preliminary Case Study of Planning With Complex Transitions: Plotting 17

18. Nightingale, P., Rendl, A.: Essence’ description (2016), arXiv:1601.02865 [cs.Al]

19. Rendl, A., Miguel, I., Gent, I.P., Gregory, P.: Common subexpressions in constraint
models of planning problems. In: Eighth Symposium on Abstraction, Reformula-
tion, and Approximation, SARA. AAAT (2009)

20. Rintanen, J., Heljanko, K., Niemel4, I.: Planning as Satisfiability: Parallel Plans
and Algorithms for Plan Search. Artificial Intelligence 170(12-13), 1031-1080
(2006)

21. Rossi, F., Van Beek, P., Walsh, T.: Handbook of constraint programming. Elsevier
(2006)

18 J. Coll et al.

Appendix A Essence Prime Model

language ESSENCE’ 1.0

given initGrid : matrix indexed by[int(1..gridHeight), int(1..gridWidth)] of int(1..

letting GRIDCOLS be domain int(1..gridWidth)

letting GRIDROWS be domain int(1..gridHeight)

letting NOBLOCKS be gridWidth * gridHeight

letting COLOURS be domain int(1..max(flatten(initGrid)))
letting EMPTY be O

letting EMPTYANDCOLOURS be domain int(EMPTY) union COLOURS

given goalBlocksRemaining : int(1..NOBLOCKS)

given noSteps : int(1..)
letting STEPSFROM1 be domain int(1..noSteps)
letting STEPSFROMO be domain int(0..noSteps)

find fpRow : matrix indexed by[STEPSFROM1] of int(0..gridHeight)
find fpCol : matrix indexed by [STEPSFROM1] of int(O..gridWidth)
find grid : matrix indexed by[STEPSFROMO, GRIDROWS, GRIDCOLS]

of EMPTYANDCOLOURS
find hand : matrix indexed by[STEPSFROMO] of COLOURS
find wallFall : matrix indexed by[STEPSFROM1i] of int(O..gridHeight)

such that
$ Initial state:
forAll gCol : GRIDCOLS .
forAll gRow : GRIDROWS .
grid[0, gRow, gColl = initGrid[gRow, gColl,

$ Goal state:

atleast(flatten(grid[noSteps,..,..1),
[NOBLOCKS - goalBlocksRemaining],
[EMPTY]),

$ Each move must do something useful:
forAll step : STEPSFROM1 .
sum(flatten(grid[step-1,..,..]1)) > sum(flatten(grid[step,..,..])),

$ Exactly one fp axis must be 0. (exclusive OR, only ONE fired angle)
forAll step : STEPSFROM1 .
(fpRow[step] * fpColl[stepl) = 0 /\ (fpRow[step] + fpColl[stepl) > O,

forAll step : STEPSFROM1 .
(hand [step-1] = hand[step])

(
$ Fired down col, hitting wall
(
(forAll colBlock : GRIDROWS .
((grid[step-1,colBlock,fpCol[step]] = hand[step-1]) \/
(grid[step-1,colBlock,fpCol[step]] = EMPTY))
)
\/
Fired row, hitting wall, dropping through hand-colour only.

~ &~

$ along the row
(
forAll rowBlock : GRIDCOLS .
((grid[step-1,fpRow[step] ,rowBlock] = hand[step-1]) \/
(grid[step-1,fpRow[step] ,rowBlock] = EMPTY))
/\
d

own the column

-

forall rowBeneath : GRIDROWS .

)

A Preliminary Case Study of Planning With Complex Transitions: Plotting 19

(rowBeneath > fpRow[step] ->
((grid[step-1,rowBeneath,gridWidth] = hand[step-1]) \/
(grid[step-1,rowBeneath,gridWidth] = EMPTY))

)
),

forAll step : STEPSFROM1 .
forAll gRow : GRIDROWS .
forAll gCol : GRIDCOLS .
(grid[step,gRow,gCol] = EMPTY)
(
$ When a cell is EMPTY, it stays EMPTY
(grid[step-1,gRow,gCol]l = EMPTY) \/
$ Deleted by shot down column
(
$ The right column
(fpCol[step] = gCol) /\
$ same colour as hand
(grid[step-1,gRow,gCol]l = hand[step-1]) /\
$ Nothing blocking the way
(forAll blockAbove : int(1..gRow-1)
((grid[step-1,blockAbove,fpCol[step]] = hand[step-1]) \/
(grid[step-1,blockAbove,fpCol[step]] = EMPTY))
)

) \/
$ Deleted by shot along row
(
$ The right row
(fpRow[step] = gRow) /\
$ same colour as hand
(grid[step-1,gRow,gCol] = hand[step-11) /\
$ no block above
((gRow = 1) \/
(grid[step-1,gRow-1,gCol] = EMPTY)) /\
$ nothing blocking way
(forAll blockLeft : int(1..gCol-1)
((grid[step-1,gRow,blockLeft] = hand[step-11) \/
(grid[step-1,gRow,blockLeft] = EMPTY))
)
) \/
$ Deleted by shot along row, then down col
(

$ Only the final column
(gCol = gridwWidth) /\
$ fpRow is above this
(fpRow[step]l < gRow) /\
$ same colour as hand
(grid[step-1,gRow,gridWidth] = hand[step-11) /\
$ Nothing blocking the way on the row
(forAll rowBlock : int(1..gridWidth)
((grid[step-1,fpRow[step] ,rowBlock] = hand[step-1]) \/
(grid[step-1,fpRow[step]l ,rowBlock] = EMPTY))
DAVAN
$ Nothing blocking the way on the final column
(forAll colBlock : int(1..gRow-1)
(colBlock > fpRow[stepl) ->
((grid[step-1,colBlock,gridWidth] = hand[step-11) \/
(grid[step-1,colBlock,gridWidth] = EMPTY))
) N\
$ Empty above the firing row on the final column
(forAll colBlock : int(1l..gRow-1)
(colBlock < fpRow[step]) ->
(grid[step-1,colBlock,gridWidth] = EMPTY)

20

),

J. Coll et al.

) \/

$ Fall from this cell to become empty - row shot underneath

(

$ There was no block above

((grid[step-1,gRow-1,gCol] = EMPTY) \/
(gRow = 1)) /\

$ Deletion below

(fpRow[step] > gRow) /\

(forAll delBlock : int(1..gCol)
((grid[step-1,fpRow[step] ,delBlock] = hand[step-1]) \/

(grid[step-1,fpRow[step] ,delBlock] EMPTY)))
\/

Final Column shot along a row consuming several blocks underneath

—~ B

$ Only the final column
(gCol = gridWidth) /\
$ There was a wallfall - this implies a successful row shot.
(wallFall[step] > 0) /\
$ The shot was beneath here
(fpRow[step] > gRow) /\
$ Nothing there to fall into here
(grid[step-1,gRow-wallFall[step],gridWidth] = EMPTY \/
gRow-wallFall[step] < 1)

)

forAll step : STEPSFROM1 .
forAll gRow : GRIDROWS .
forAll gCol : GRIDCOLS .
(grid[step,gRow,gCol] = grid[step-1,gRow,gColl)

(

—~ P

~ ®H

$ It was empty

(grid[step-1,gRow,gCol] = EMPTY) \/

$ Fired beneath this row, not far enough to cause fall:

(

(fpRow[step] > gRow) /\

(exists blockLeft : int(1..gCol)
((grid[step-1,fpRow[step] ,blockLeft] != EMPTY) /\
(grid[step-1,fpRow[step]l,blockLeft] != hand[step-11))

)

\/

Fired along this row, but something in the way

~ ®

(fpRow[step]l = gRow) /\
(exists blockLeft : int(1..gCol-1)
((grid[step-1, gRow, blockLeft] != EMPTY) /\
(grid[step-1, gRow, blockLeft] != hand[step-1]))
)
\/

Fired along row above, cols except last

(gCol < gridwidth) /\
(fpRow[step]l != 0) /\
(fpRow[step] < gRow)
\/

Fired along row above, last col. Sth in way on row or last col.

(gCol = gridWidth) /\
(fpRow[step] !'= 0) /\
(fpRow[step] < gRow) /\
(

(exists rowBlock : int(1..gridWidth)
((grid[step-1, fpRow[stepl, rowBlock] != EMPTY) /\
(grid[step-1, fpRowl[step], rowBlock] != hand[step-1]))
) \/
(exists colBlock : int(1..gRow-1)

A Preliminary Case Study of Planning With Complex Transitions: Plotting

),

~ ¥~

—~ B

~ &H

—~ P

)

((colBlock >= fpRowl[stepl) /\
(grid[step-1, colBlock, gridWidth] != EMPTY) /\
(grid[step-1, colBlock, gridWidth] != hand[step-11))
)
)
\/

Fired down this column, but something in way

(fpCol[step] = gCol) /\

(exists blockAbove : int(1..gRow-1)
((grid[step-1,blockAbove,gCol] != EMPTY) /\
(grid[step-1,blockAbove,gCol] != hand[step-11)))

\/

Fired down a different column

(fpCol[step] !'= 0) /\
(fpCollstep]l != gCol)
\/

This row or below. Same colour block falls here. All but last col.

(gCol < gridWidth) /\

(fpRow[step] >= gRow) /\

(forAll delBlock : int(1..gCol)
((grid[step-1,fpRow[step] ,delBlock] = hand[step-1]) \/
(grid[step-1,fpRow[step] ,delBlock] = EMPTY))) /\

(grid[step-1,gRow-1,gCol] = grid[step-1,gRow,gColl)

\/

This row or below. Same colour block falls here. Last col.

(gCol = gridWidth) /\
(fpRow[step] >= gRow) /\
(wallFall[step] > 0) /\

(grid[step-1,gRow-wallFall[step],gCol]l = grid[step-1,gRow,gColl)

forAll step : STEPSFROM1 .
forAll gRow : GRIDROWS .
forAll gCol : GRIDCOLS .
((grid[step,gRow,gCol] != grid[step-1,gRow,gColl) /\
(grid[step,gRow,gCol] != EMPTY))

(

$
(

~ ®

Fall from above. Not rightmost col.

(gCol < gridWidth) /\

$there was a block above

(grid[step-1,gRow-1,gCol] != EMPTY) /\

$Deletion here or below

(fpRow[step] >= gRow) /\

(forAll delBlock : int(1..gCol)
((grid[step-1,fpRow[step] ,delBlock] = hand[step-11) \/
(grid[step-1,fpRow[step],delBlock] EMPTY))) /\

$ Is now the same as the block above.

(grid[step,gRow,gCol] = grid[step-1,gRow-1,gColl) /\

$ Which was a different colour

(grid[step-1,gRow,gCol] != grid[step-1,gRow-1,gColl)

\/

Fall from above. Rightmost col.

(gCol = gridWidth) /\

$ WallFall implies successful row shot
(wallFall[step] > 0) /\

$ Shot here or below

(fpRow[step] >= gRow) /\

$ Is now the same as the block above
(grid[step,gRow,gridWidth] =
grid[step-1,gRow-wallFall[step],gridWidth]) /\

21

22 J. Coll et al.

$ Which was a different colour
(grid[step-1,gRow,gridWidth] !=
grid[step-1,gRow-wallFall[step],gridWidth])
\/

Cell swaps with hand: row shot.

~ ®H

(gRow = fpRow[stepl) /\

$ The row shot

(forAll colsLeft : int(l..gCol-1)
(grid[step-1,fpRow[step],colsLeft] = hand[step-11) \/
(grid[step-1,fpRow[step],colsLeft] = EMPTY)) /\

$ At least one cell has to match the hand

(exists colsLeft : int(1l..gCol-1)
(grid[step-1,fpRow[step],colsLeft] = hand[step-11)) /\

$ Exchanges with the hand

(hand[step] = grid[step-1,fpRow[step],gCol]l) /\

(hand[step-1] = grid[step,fpRow[step]l,gColl) /\

$ Which was a different colour

(hand[step-1] != grid[step-1,fpRow[step],gColl)

\/

Cell swaps with hand: col shot

~ ¥

(gCol = fpCollstepl) /\

$ The col shot

(forAll rowsAbove : int(1..gRow-1)
(grid[step-1,rowsAbove,fpCol[step]] = hand[step-1]) \/
(grid[step-1,rowsAbove,fpCol[step]l] = EMPTY)) /\

$ At least one cell has to match the hand

(exists rowsAbove : int(1..gRow-1)
(grid[step-1,rowsAbove,fpCol [step]] = hand[step-1])) /\

$ Exchanges with the hand

(hand[step] = grid[step-1,gRow,fpColl[stepl]l) /\

(hand[step-1] = grid[step,gRow,fpCol[stepl]) /\

$ Which was a different colour

(hand[step-1] != grid[step-1,gRow,fpCol[stepl])

\/

Cell swaps with hand: row then down last col.

—~ B

$ rightmost col
(gCol = gridWidth) /\
$ fpRow is above this
(fpRow[step] < gRow) /\
$ Nothing blocking the way on the row
(forAll rowBlock : int(1..gridWidth-1)
((grid[step-1,fpRow[step] ,rowBlock] = hand[step-1]) \/
(grid[step-1,fpRow[step] ,rowBlock] = EMPTY))
) /N
$ Nothing blocking the way on the final column
(forAll colBlock : int(1..gRow-1)
(colBlock >= fpRow[stepl) ->
((grid[step-1,colBlock,gridWidth]
(grid[step-1,colBlock,gridWidth]
)\
$ But there must exist one hand block on firing row or final col.
((exists rowBlock : int(1..gridWidth-1)
grid[step-1,fpRow[step] ,rowBlock] = hand[step-11)
\/
(exists colBlock : int(1..gRow-1)
colBlock >= fpRow[step] /\
grid[step-1,colBlock,gridWidth] = hand[step-11)
) /N
$ Exchanges with hand
(hand[step] = grid[step-1,gRow,gridWidth]) /\
(hand [step-1] = grid[step,gRow,gridWidth]) /\
$ Which was a different colour
(hand[step-1] != grid[step-1,gRow,gridWidth]l)

hand[step-1]1) \/
EMPTY))

A Preliminary Case Study of Planning With Complex Transitions: Plotting

forAll step : STEPSFROM1 .
forAll i : int (1..gridHeight)
(wallFall[step] = i)

(exists row : int(2..gridHeight)
(fpRow[step] = row) /\
$ Consumed row to the rightmost column
(forAll col : int(1..gridWidth)
grid[step-1,row,col] = EMPTY \/
grid[step-1,row,col] = hand[step-1]) /\
$ Something to fall
(grid[step-1,row-1,gridWidth] !'= EMPTY) /\
$ Fell this far
(forAll underRow : int (row..row+i-1)
grid[step-1,underRow,gridWidth] = hand[step-1]) /\
$ And no further
((grid[step-1,row+i,gridWidth] != hand[step-11) \/
(row+i > gridHeight))
),

true

Appendix B PDDL Model

(define (domain plotting)

(:requirements :typing :equality :universal-preconditions :conditional-effects)

(:types number colour)
(:constants null wildcard - colour)

(:predicates
(hand ?c - colour)
(coloured ?r ?c - number ?c - colour)
(succ ?nl ?n2 - number)
(gt 7nl 7n2 - number)
(pred ?n1 ?7n2 - number)
(1t ?n1 ?n2 - number)
(distance ?nl1 ?n2 ?n3 - number)

(isfirstcolumn ?n - number) ;; is the first column?
(islastcolumn ?n - number) ;; is the last column?
(istoprow ?n - number) ;; is the top row?
(isbottomrow ?n - number) ;; is the bottom column?

;; are we allowed to fire on those?
(blockedcol ?n - number)
(blockedrow ?n - number)

;; removing a partial row:

HH - we are removing part of a row and there is a next block that has a different

HH colour than the first one.
(:action shoot-partial-row
:parameters (?r - number 7t - number ?c - colour)
:precondition
(and

;; there exists a number that is the successor of the to

;; and it has a different colour than c
(exists (?col - number)
(and
(succ ?col 7t)
(not (coloured ?r ?col 7?c))
(not (coloured ?r ?col null))))

;3 exist some column before 7t or 7t that has colour 7c

(exists (?col - number)

23

24 J. Coll et al.

(and
(or (1t ?7col 7t) (= 7?col 7t))
(coloured ?r ?col ?c)))

;; stop possible weird stuff

(not (= ?c null))

(not (= ?7c wildcard))

;; colour block and hand is the same (we avoid null movements)
(or (hand ?c) (hand wildcard))

;; from the start, all the blocks up to ?t have either the colour ?c or are null
(forall (?col - number)
;3 For all columns, either:
(or
;; we are out of bounds or
(gt 7col 7t)

;; the middle colors and color of 7t are null or the correct one
(coloured ?r ?col 7c)
(coloured ?r ?col null))))
:effect
(and
;; Change hands colour and
;; The next cell that we cannot remove gets the colour from the hand
(forall (?nextcolumn - number ?nextcolour - colour)
(when
(and
;; there is a new row down this one
(succ 7nextcolumn ?t)
;; and the cell is coloured 7nextcolour
(coloured ?r ?nextcolumn ?nextcolour))
;; The hand gets a new colour
(and
;; change next cell colour
(not (coloured ?r 7nextcolumn ?nextcolour))
(coloured ?r ?7nextcolumn ?c)
;; change hand colours
(hand ?nextcolour)
(not (hand 7c))
(not (hand wildcard)))))

;; finally move everything downwards. we have 2 cases:

;3 — we are on the top row

;3 — we are on another row

(forall (?currentrow ?nextrow ?currentcol - number)

(and
;; We are on the top row: we must restore the "null" colour
(forall (7currentcolor - colour)
(when
(and
;; we are on the top row
(istoprow ?currentrow)
;3 The column is in the correct range
(or (1t ?currentcol ?t) (= ?currentcol 7t))
;; We identify the colour of the cell
(coloured 7currentrow ?currentcol ?currentcolor)
;3 avoid contradiction
(not (coloured ?currentrow ?currentcol null)))
(and

(not (coloured ?currentrow ?currentcol ?7currentcolor))
(coloured ?currentrow ?currentcol null))))

;; We are on any other row: disable the current colour and change the next colour
(forall (?currentcolor ?nextcolor - colour)

(when
;; when the row is on top of the one we deleted, we "decrease"

;; one position downwards
(and

A Preliminary Case Study of Planning With Complex Transitions: Plotting 25

(1t ?currentrow ?r)

(succ ?nextrow ?currentrow)

;5 The current column is in the correct range (less than the 7t)
(or (1t 7currentcol ?t) (= Pcurrentcol ?7t))

;; here we ensure that the cells have the pertaining colours
(coloured ?currentrow ?currentcol ?currentcolor)
(coloured ?nextrow ?currentcol 7nextcolor)
;; avoid the contradiction in the effect if both colours are equal
(not (= ?currentcolor ?nextcolor)))
(and ;; and as an effect we change the lower row
(not (coloured ?7nextrow 7currentcol ?7mextcolor))
(coloured 7nextrow ?currentcol ?currentcolor))))))))

(:action shoot-column
:parameters (?column - number ?t - number ?c - colour)
:precondition
(and
;3 the successor of the to is of a different colour
;; or we are eating the whole column.
;; note we don’t have to check null colour because gravity
(or
(exists (?row - number)
(and
(succ ?row 7t)
(not (coloured ?row ?column ?c))))
(isbottomrow 7t))

;; stop possible weird stuff

(not (= 7c null))

(not (= ?7c wildcard))

;; colour block and hand is the same (we avoid null movements)
(or (hand ?c) (hand wildcard))

;3 all the middle blocks also have the same colour
(forall (?row - number)

(or
;; either we are out of bounds or
(gt ?row 7t)
;; we are exactly in 7t and it has the correct colour
(and (= ?7row ?7t) (coloured ?row 7column ?c))
;; we are on top of 7t and therefore it can be either ?c or null
(and
(1t ?row ?t)
(or
(coloured ?row ?column ?c)
(coloured ?row ?column null))))))
ceffect
(and
(forall (?runningrow - number)
(and
;; we remove the colour of the cells before the "to" (7t)
(when
(and

(coloured ?runningrow ?column 7c)
(or (1t ?runningrow ?t)
(= ?runningrow 7t))
(not (coloured ?runningrow 7column null)))
(and
(coloured ?runningrow ?column null)
(not (coloured ?runningrow ?column ?c))))

;; we set the next block colour to the removed cells colour
;; and we set the hands colour to the correct one
(forall (?nextcolour - colour)
(when
(and
(succ ?runningrow 7t)

26 J. Coll et al.

(coloured ?runningrow ?column ?nextcolour))
(and
;3 next cell colour
(not (coloured ?runningrow ?column ?nextcolour))
(coloured ?runningrow 7column ?c)
;3 hand colour
(not (hand wildcard))
(not (hand ?c))
(hand ?nextcolour))))))

;; When we are eating the whole column, we set the correct colour onto the hand
(when
(isbottomrow ?t)
(and
(not (hand wildcard))
(hand 7¢)))))

(:action shoot-row-and-column
:parameters (?r - number ?t - number ?c - colour)
:precondition
(and
;3 rows of the shot are coherent
(gt 7t 7r)

;; stop possible weird stuff

(not (= ?c null))

(not (= ?c wildcard))

;; colour block and hand is the same (we avoid null movements)
(or (hand ?c) (hand wildcard))

;3 all the blocks in the row and in the corresponding part of the
;; column are either the same colour or are empty
(forall (?7row ?col - number)

(and
(imply
(= ?r ?row)
(or
(coloured ?r ?col 7c)
(coloured ?r ?col null)))
(imply

(and
(gt ?row 7r)
(not (gt ?row 7t))
(islastcolumn ?col))

(or
(coloured ?row ?col ?c)
(coloured ?row ?col null)))))

;3 we have to eat at least one of those!
(exists (7row 7col - number)
(or
(and
(= ?r ?row)
(coloured ?r ?col 7?c))

(and
(gt ?row 7r)
(not (gt ?row 7t))
(islastcolumn ?col)
(coloured ?row ?col 7c))))

;3 either 7t is the last row, or in its successor there is a different colour
(or
(isbottomrow ?7t)
(exists (7nextrow 7lastcol - number)
(and
(succ ?nextrow 7t)
(islastcolumn ?lastcol)

A Preliminary Case Study of Planning With Complex Transitions: Plotting 27

(not (coloured ?nextrow ?lastcol ?c))
(not (coloured ?7nextrow ?lastcol null))))))
:effect
(and
;; move everything downwards except the last column.
;3 2 cases: we are on the top row or we are on a middle row
(forall (?currentrow 7currentcol ?7nextrow - number)

(and
;; case 1 - We are on the top row: we must restore the "null" colour
(when
(istoprow ?currentrow)
(and

(not (coloured ?currentrow ?currentcol ?7c))
(coloured ?currentrow ?currentcol null)))

;; case 2 - We are on the middle row: disable the current colour and change the next colour
(forall (?currentcolor ?7nextcolor - colour)

(when

(and
(not (istoprow ?nextrow)) ;3 is not top row
(not (islastcolumn ?currentcol)) ;; is not last column
;; position the "pointers"
(1t ?currentrow 7r)
(succ ?nextrow ?currentrow)
;; ensure that the cells have the pertaining colours
(coloured ?currentrow ?currentcol ?currentcolor)
(coloured ?nextrow ?currentcol ?nextcolor)
;;avoid effect contradiction (if both colours are equal)
(not (= ?currentcolor ?nextcolor))

)

(and ;; and as an effect we change the lower row

(not (coloured ?7nextrow Pcurrentcol ?7nextcolor))
(coloured ?nextrow ?currentcol ?currentcolor))))))

;3 The waterfall effect
(forall (?currentrow 7nextrow ?lastcolumn ?d 7dplusl ?d2 - number ?nextcolour ?currentcolour - colour)

(and
;; unconditionally, if we reach the end of any row at all, the cell
;; on the top right of the grid will get a null.
(when
(and
(istoprow ?currentrow)
(islastcolumn ?lastcolumn)
(coloured ?currentrow ?lastcolumn ?nextcolour)
(not (coloured ?currentrow 7lastcolumn null)))
(and
(not (coloured ?currentrow ?lastcolumn ?7nextcolour))
(coloured ?currentrow ?lastcolumn null)))
;; we act only on the set of cells between ?r and 7t
;; base case: we are on top of the row
(when

(and
;3 we consider the case of the last column
(islastcolumn ?lastcolumn)
;; distance between the row we shoot at and where we stop is ?7d
(distance ?r ?t ?d)
;; and we calculate the distance we have to move cells downwards
(succ ?dplusl 7d)
;; we need to fix this here to be able to compute the distance with the
;; nextrow pointer, which is the one we use to change
(istoprow ?currentrow)
;; we are on top of the 7t
(or (1t 7nextrow ?7t) (= ?7nextrow ?7t))
;3 7d2 is the distance between nextrow currentrow
;; and this distance is less than what we should copy

28 J. Coll et al.

(distance ?currentrow ?nextrow ?7d2)
(1t ?7d2 7dplusl)

;3 and the colours are correct and not null
(coloured ?7nextrow ?lastcolumn ?nextcolour)
(not (= ?nextcolour null)))
(and ;; we switch colours
(not (coloured ?nextrow ?lastcolumn ?nextcolour))
(coloured 7nextrow ?lastcolumn null)))
;; other cases
(when
(and
;3 we consider the case of the last column
(islastcolumn ?lastcolumn)
;; distance between the row we shoot at and where we stop is ?7d
(distance ?r ?t ?d)
;3 and we calculate the distance we have to move cells downwards
(succ ?dplusl 7d)
;; we are on top of the 7t
(or (1t ?nextrow ?t) (= ?nextrow 7t))
;3 and the distance is ?dplusi
(distance 7nextrow ?currentrow ?dplusil)
;3 and the colours are correct and different
(coloured ?currentrow ?lastcolumn ?currentcolour)
(coloured ?nextrow ?lastcolumn ?nextcolour)
(not (= ?currentcolour ?nextcolour)))
(and ;; we switch colours
(not (coloured ?nextrow ?lastcolumn ?nextcolour))
(coloured ?nextrow ?lastcolumn ?currentcolour)))
;; finally, we change the colour of the cell on the bottom of the 7t.
(when
(and
;3 we consider the case of the last column
(islastcolumn ?lastcolumn)
;; distance between the row we shoot at and where we stop is ?7d
(distance ?r 7t 7d)
;3 and we calculate the distance we have to move cells downwards
(succ ?dplusl 7d)
(succ ?nextrow 7t)
;; and the colour is correct and different from null
(coloured 7nextrow ?lastcolumn ?7nextcolour))
(and ;; we switch colours
(not (coloured ?7nextrow 7lastcolumn ?nextcolour))
(coloured ?nextrow ?lastcolumn ?c)))))

;; Change hands colour:
;; base case when we eat all the last column or is all null
(when
(isbottomrow 7t)
(and
(hand 7c)
(not (hand wildcard))))

;3 — we are not the last row before ground, therefore
;3 the colour of the hand becomes the one under the last cell of the row
(forall (7nextrow ?7lastcol - number ?nextcolour - colour)
(and
(when
(and
;; there is another row down this one
(succ ?nextrow 7t)
;3 and we are on the last column
(islastcolumn ?lastcol)
;; and the next (down) cell is coloured ?7nextcolour
(coloured 7nextrow ?lastcol ?nextcolour))
(and
;; we change the colour of the next (down) cell
(not (coloured ?nextrow ?lastcol ?7nextcolour))

A Preliminary Case Study of Planning With Complex Transitions: Plotting 29

(coloured ?7nextrow ?lastcol ?c)

;; we set the hand to the next cell colour
(hand ?nextcolour)

(not (hand 7?c))

;3 we ensure we lose the wildcard if we had it
(not (hand wildcard))))))))

(:action shoot-only-full-row
;3 ?r - what complete row we are shooting.
55 ?c - the colour of the range
:parameters (?r - number ?c - colour)
:precondition
(and
;; stop possible weird stuff
(not (= ?7c null))
(not (= ?c wildcard))
;; colour block and hand is the same (we avoid null movements)
(or (hand ?c) (hand wildcard))

;; all the blocks in the row and in the corresponding part of the
;5 column are either the same colour or are empty
(forall (?col - number)
(or
(coloured ?r ?7col 7c)
(coloured ?r ?col null)))

;3 we have to eat at least one of those!
(exists (?col - number)
(coloured ?r ?col 7c))

;3 either ?r is the last row, or in the cell below the last one
;3 we have a different colour than ?7c
(or
(isbottomrow ?r)
(exists (?nextrow 7lastcol - number)
(and
(succ ?nextrow ?r)
(islastcolumn ?lastcol)
(not (coloured ?nextrow ?lastcol ?c))
(not (coloured 7nextrow ?lastcol null))))))
reffect
(and
;; move everything downwards
;3 2 cases: we are on the top row or we are on a middle row
(forall (7currentrow ?currentcol ?nextrow - number)

(and
;; case 1 - We are on the top row: we must restore the "null" colour
(when
(istoprow ?currentrow)
(and

(not (coloured ?currentrow ?currentcol ?c))
(coloured ?currentrow ?currentcol null)))

;; case 2 - We are on the middle row: disable the current colour and change the next colour
(forall (7currentcolor 7nextcolor - colour)
(when
(and
(not (istoprow ?nextrow)) ;53 is not top row
;; position the "pointers"
(1t ?currentrow 7r)
(succ ?nextrow ?7currentrow)
;; ensure that the cells have the pertaining colours
(coloured ?currentrow ?currentcol ?currentcolor)
(coloured ?7nextrow ?currentcol ?nextcolor)
;;avoid effect contradiction (if both colours are equal)
(not (= ?currentcolor ?nextcolor))

30 J. Coll et al.

)

(and ;; and as an effect we change the lower row
(not (coloured ?7nextrow Pcurrentcol ?7nextcolor))
(coloured ?nextrow ?7currentcol ?currentcolor))))))

;; Change hands colour:
;; base case when we eat all the last column or is all null
(when
(isbottomrow ?r)
(and
(hand ?c)
(not (hand wildcard))))

;3 — we are not the last row before ground, therefore

;3 the colour of the hand becomes the one under the last cell of the row

(forall (?nextrow ?lastcol - number ?nextcolour - colour)

(and
(when
(and
;3 there is another row down this one
(succ ?nextrow 7?r)
;; and we are on the last column
(islastcolumn 7lastcol)
;; and the next (down) cell is coloured ?nextcolour
(coloured ?nextrow ?lastcol ?7nextcolour))
(and

;; we change the colour of the next (down) cell
(not (coloured ?nextrow ?lastcol ?7nextcolour))
(coloured ?7nextrow ?lastcol ?c)
;3 we set the hand to the next cell colour
(hand ?nextcolour)
(not (hand ?c))
;3 we ensure we lose the wildcard if we had it
(not (hand wildcard))))))))

