Increasing modeling language convenience
with a universal n-dimensional array,

CPpy as python-embedded example

Tias Guns, VUB
tias.guns@vub.be

Modref 2019

http://github.com/tias/cppy

What is the purpose of a modeling language?

Lessons learned from MiningZinc

Where does the data come from? Modeling: freq. itemset mining with cost

Da"ay [int] of set of int : TDB o . '-'Iril;)fa_ry with itemset mining specific functions and predic_aiéém
2 query("mydb.sqgl”, "SELECT tid,item FROM purchases”); — —
o a include "lib_itemsetmining.mzn"

ThIS reqUireS Changes to the mzn int: Nrl; int: NrT; int: MinFreq;

array[1..NrT] of set of int: TDB;

Compller var set of 1..Nrl: ltems;
constraint card(cover(ltems, TDB)) >= MinFreq;
And how to do user-level array [1. Nri] of int: Cos;
. int; MinCost;
preproce.SSIng or featu re constraint sum(i in Items) (Cost[i]) >= MinCost
construction?

solve satisfy;

— in yet another language...

Primitive CP usage, 1/2

“Pyconstruct: CP Meets Structured Prediction” (3 from - Sinear pnan" import Linear sodel)
{% from 'chain.pmzn' import

DragOne et al, IJCAI19 demO n_emission_features, emission_features,

n_transition_features, transition_features
%}

L] SVM that repeatedly Ca”s CP {% from "metrics.pmzn' import hamming %}
int: MAX_HEIGHT = 9;
* Implemented their own 'mznpy’ library Sex of 1t HEIGHT = 1. KACHETGHT:

set of int: WIDTH = 1 .. MAX_WIDTH;

H % Set of symbols (labels). Digits are encoded as themselves.
® added a teXt_based templatlng Ianguage Over % Assume '+' and '=' are encoded respectively with 18 and 11.
. int: PLUS = 10;
mInIZInC int: EQUAL = 11;
int: N_SYMBOLS = 12;
set of int: SYMBOLS = © .. N_SYMBOLS - 1;

% Constants
int: N_PIXELS = MAX_HEIGHT * MAX_WIDTH;
set of int: PIXELS = 1 .. N_PIXELS;

Feels like a step back to PHP3 to me...

{% call domain(problem) %}

Weak integration: write strings in python, that Tt ey €T e seauence and Tnages

. . set of int: SEQUENCE = 1 .. length;
are written to file that are sent to mzn command array[SEQUENCE, HEIGHT. WIDTH] of {0, 1}: images;
1 % Output: Sequence of symbols
Ilne"' array[SEQUENCE] of var SYMBOLS: seqguence;
{% if problem == 'loss_aumented_map' %}
array [SEQUENCE] of int: true_sequence = {{ y_true['sequence']|dzn }};
{% endif %}

array [SEQUENCE, PIXELS] of {@, 1}: pixels = array2d(SEQUENCE, PIXELS, [
images[s, i, j] | s in SEQUENCE, i in HEIGHT, j in WIDTH
1)

{% endcall %}

Primitive CP usage, 2/2

“Tacle: learning constraints in
tabular data” Kolb et al, 2017

- |learns formula's in sheets

- uses CP for efficient
candidate generation

- uses 'python-constraints'
a 1200 sloc forward checker...

but native python, trivial integration

Bl A REEvevam e whnw

C D E F G
2nd 3rd Qua 4th Total
378 9% 387 1526
na a7 BE 1551
146 167 a1
9 98 6 1 39z
1003 10 48 1081 4160
250.75 257 270 1040
3Ta 408 3B]
93 4 10 382
Cor. Co
3 KEri
3 Kri
2 Ma
4 Bir K

Popular data-driven (Al) frameworks:
* scikit-learn (and pandas) :: ML

* pytorch :: deep learning

* CcvXpy :: convex optimisation

Popular data-driven (Al) frameworks:
* scikit-learn (and pandas) :: ML

* pytorch :: deep learning

* CVXpY :: convex optimisation

Why?

- ease of use and documentation: quick start
- ease of integration with existing code

- solid technology underneath

What do they have in common?

- Python-based library
- Numpy's ndarray as basic data structure
- Operator overloading and as convenient as the standard library

Example: CVXpy

Stephen Boyd's framework inport. numpy 25
'disciplined convex programm’ ; froen doie

n = 20

np.random.seed(1)

A = np.random.randn(m, n}
b = np.random.randn(m)

Construct the problem.

Can you spot the difference x = cp.Variable(n)

objective = cp.Minimize(cp.sum squares(A*x - b))

between the use Of bUiIt'in ;igztiaicgttlier{gm?;b?écii;Z,lt]:onstraints}
funCt|OnS, numpy funCtlonS and # The optimal objective value is returned by “prob.solve()’.

result = prob.solve()
CVX funCtionS’) # .f.he optimal value for x is stored in 'x.value’.
. print{x.value)
The optimal Lagrange multiplier for a constraint is stored in
‘constraint.dual value’.

print{constraints[0].dual value)

| wish this existed for CP!

Purpose of modeling language?

* Convenience

* High-level abstractions

* Possible to reuse/extend the backend

CPpy design principles

1) solver independent
2) n-dimensional array as basic datastructure (Numpy's)

)

)
3) operator overloading, few custom constructs
4) light-weight abstract syntax tree: no logic inside
)

5) variable objects give direct access to the solution

from cppy import =
import numpy as np

Construct the model
s,e,n,d,myo,r,y = IntVar (0,9, 8)

constraint = []

constraint 4= [alldifferent ([s,e,n,d,m,o,r,y]) |

constraint 4= | sum ([s,e,n,d] *x np.flip (10x*xnp.arange(4)))
+ sum ([m,o,r,e] * np.flip (10xxnp.arange(4)))
— sum([m,o,n,e,y] * np.flip (10**np.arange(5))) |

constraint 4= [s > 0, m > 0]

model = Model(constraint)

stats = model. solve ()

print (7 S,E,N.D = ", [x.value for x in [s,e,n,d]])

print (" M,O,R.E = 7, [x.value for x in [m,o,r,e]])

print ("M,O,N,E|Y =", [x.value for x in [m,o,n,e,y]])

x = 0 # cells whose value we seek

n =9 # matrix size

given = numpy.array ([
[x, x, x, 2, x, 5, x, x, x|,
[x, 9, x, x, x, x, 7, 3, x],
[x, x, 2, x, x, 9, x, 6, x],

Variables
puzzle = IntVar (1, n, shape=given .shape)

constraint = []
constraints on rows and columns
constraint 4= [alldifferent (row) for row in puzzle |

constraint += [alldifferent(col) for col in]

constraint on blocks

for i in range(0,n,3):
for j in range(0,n,3):
constraint 4+= | alldifferent(puzzlel[i:i—|—3, j:j—|—3]|)]

constraints on values
constraint 4+= | |puzzle [given >0] == given [given >0]|]

model = Model(constraint)
stats = model. solve ()

Toolchain (not fully implemented)

Python

T

CPpy

calls

(user spec)

creates

(numpy.ndarray

essio

NDVarArray NumVar Impl

IntVarImpl

BoolVarImpl

Comparison

!

14

i

* Minimal but meaningful class diagram
— automatically constructed through operator overloading
— example: X +Y — Operator(“sum”,[X,Y])

* Goal: easy to add rewrite rules in backend
— foster more research and use of modref principles!

Discussion (last slide)

* You just propose syntax you are used too, and all syntax takes getting used too

* This is just NumberJack, and that has not taken off (already has matrix variable)

* | believe the purpose of modeling languages instead is ...
* Text-based languages in a programming language are a hack (e.g. minizinc-python)

* Is CPpy a modeling language or not?

* Our current modeling languages are modern enough already

* Nobody wants to add own rewrite rules or change the back-end,
we should aim for push-button software

