

Increasing modeling language convenience
with a universal n-dimensional array,

CPpy as python-embedded example

Tias Guns, VUB
tias.guns@vub.be

Modref 2019

http://github.com/tias/cppy

What is the purpose of a modeling language?

Lessons learned from MiningZinc
Where does the data come from?

This requires changes to the mzn
compiler.

And how to do user-level
preprocessing or feature
construction?
→ in yet another language...

Primitive CP usage, 1/2
“Pyconstruct: CP Meets Structured Prediction”

Dragone et al, IJCAI19 demo

 SVM that repeatedly calls CP

 Implemented their own 'mznpy' library

 added a text-based templating language over
minizinc

Feels like a step back to PHP3 to me...

Weak integration: write strings in python, that
are written to file that are sent to mzn command
line...

Primitive CP usage, 2/2
“Tacle: learning constraints in
tabular data” Kolb et al, 2017

 learns formula's in sheets
 uses CP for efficient

candidate generation
 uses 'python-constraints'

a 1200 sloc forward checker...

but native python, trivial integration

Popular data-driven (AI) frameworks:
 scikit-learn (and pandas) :: ML
 pytorch :: deep learning
 cvxpy :: convex optimisation

Popular data-driven (AI) frameworks:
 scikit-learn (and pandas) :: ML
 pytorch :: deep learning
 cvxpy :: convex optimisation

 Why?
 ease of use and documentation: quick start
 ease of integration with existing code
 solid technology underneath

 What do they have in common?
 Python-based library
 Numpy's ndarray as basic data structure
 Operator overloading and as convenient as the standard library

Example: CVXpy
Stephen Boyd's framework
'disciplined convex programm'

Can you spot the difference
between the use of built-in
functions, numpy functions and
cvx functions?

I wish this existed for CP!

Purpose of modeling language?
 Convenience
 High-level abstractions
 Possible to reuse/extend the backend

CPpy design principles

1) solver independent

2) n-dimensional array as basic datastructure (Numpy's)

3) operator overloading, few custom constructs

4) light-weight abstract syntax tree: no logic inside

5) variable objects give direct access to the solution

Example: Send More Money

Toolchain (not fully implemented)

CPpy

Cppy
(user spec)

Model
 constraint:

 expression tree
 objective:

 expression tree

Solver Interface

to_mzn_text

to_xcsp3_text

pymzn

mzn-python

xcsp3py

ortools

oscar

choco

minizinc

gecode

chuffed

or-tools

Python

creates

calls

sCOP

pymznto_pymzn

to_mzn-python

to_xcsp3py

to_ortools

to_numberjack

Expression structure

 Minimal but meaningful class diagram

– automatically constructed through operator overloading

– example: X + Y → Operator(“sum”,[X,Y])

 Goal: easy to add rewrite rules in backend
→ foster more research and use of modref principles!

Discussion (last slide)
 You just propose syntax you are used too, and all syntax takes getting used too

 This is just NumberJack, and that has not taken off (already has matrix variable)

 I believe the purpose of modeling languages instead is …

 Text-based languages in a programming language are a hack (e.g. minizinc-python)

 Is CPpy a modeling language or not?

 Our current modeling languages are modern enough already

 Nobody wants to add own rewrite rules or change the back-end,
we should aim for push-button software

http://github.com/tias/cppy

