

University of
St Andrews

University
of Victoria

UNIVERSITY
of York

Constraint modelling and solving: Learning from observing people

**Ruth Hoffmann, Xu Zhu, Özgür Akgün, Miguel Nacenta,
Peter Nightingale**

ModRef 2022, Technion Haifa

What?

- Be conscious of the human element of your applications and tools
- Be conscious of how to explain/teach CP

Why?

- Gain knowledge into how people think about constraint problems and their solution
- Understand the potential and importance of appropriate representations of problems
- Improve understanding about how to build effective problem visualizations

Long term impact

- Benefit the designs of languages and interfaces for problem description
- Improve communication between the solver software and the end user
- Empower learners and practitioners of CP with a better understanding of important concepts

Limitations

- This is the first human-centred study addressing how people think about CP problems
- It is a small study
- It is an "unfocussed" study meant to inspire and inform

Setup – Participants

- 30 participants
- All either studying towards their first degree or with at least 1 degree
- Participants from 3 different backgrounds; non-CS, CS or CP
- 10 participants in each of the 3 groups

Setup – Problems

<https://github.com/stacs-cp/cp2022-hcicp>

Each participant was assigned two problems out of

- 1** Word Crypto
- 2** Subset Sum
- 3** Sudoku
- 4** Scheduling
- 5** Magic Square
- 6** Knapsack

Setup – Problems

<https://github.com/stacs-cp/cp2022-hcicp>

Word Crypto

Consider an addition:

$$\begin{array}{r} \text{S E N D} \\ + \text{M O R E} \\ \hline \text{M O N E Y} \end{array}$$

Where each letter represents a number. Find a number for each letter which would satisfy the addition. Each letter represents a different number.

Setup – Problems

<https://github.com/stacs-cp/cp2022-hcicp>

Subset Sum

Given a set of numbers, find a subset of those numbers which sums up to zero. Find as many sets as possible.

Set: 1, -3, 5, 6, -2, 5, -7

Setup – Stages

- 3 stages, each approx 15mins
 - 1 Problem representation
 - 2 Problem solving
 - 3 Solver coding
- non-CS only participated in stages 1 & 2
- CS and CP participated in all stages

Problem Representation

How People Visually Represent Discrete Constraint Problems, X Zhu, MA Nacenta, Ö Akgün, P Nightingale (2019)

- The participants were asked to try to illustrate a problem to a friend assuming that they can only communicate using paper
- The participants were instructed to try to use as few words as possible in the specifications

Problem Solving

Understanding how people approach constraint modelling and solving, RH, X Zhu, Ö Akgün, MA Nacenta (2022)

- The participants were asked to try to solve the problem by hand, without computer aid
- The participants were encouraged to talk aloud their thought processes and decisions
- Occasionally the experimenter would ask for clarifications or offered short reminders of the task

Solver Coding

- The CS participants were asked to write pseudocode for an algorithm which can solve the tasks on paper
- We did not require the participants to produce a fast or optimal algorithm though they could do if they wished
- For CP participants, instead of pseudo-code, we asked them to write a constraints model using Essence' or another modelling language of their choice

Representation

- Categorise different writings, drawings and doodles
- Analyse commonalities and differences

1	2	3
4	4	5
6	7	8

X

1	2	3
4	5	6
7	4	9

X

1	2	3
0	5	-6
7	8	9

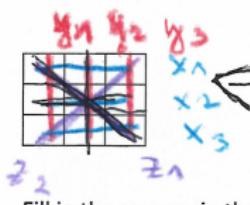
X

$$0 < 1$$
$$-6 < 1$$

5	32	17
28	3	11
10	4	9

X

$$32 > 9$$

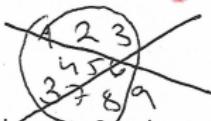
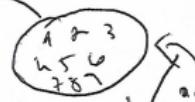

$$17 > 9$$

$$28 > 9$$

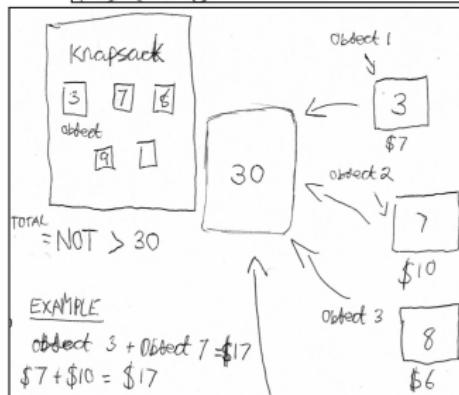
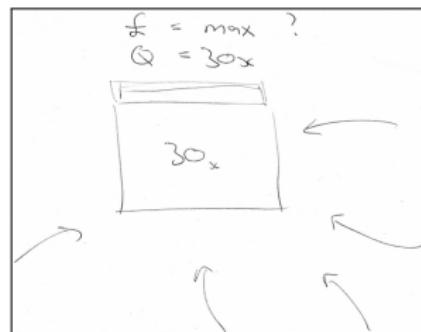
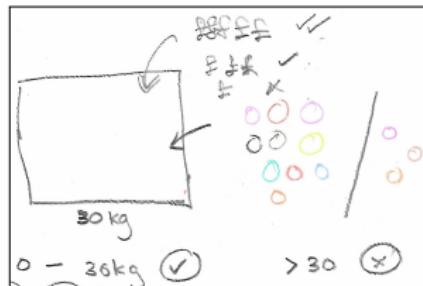
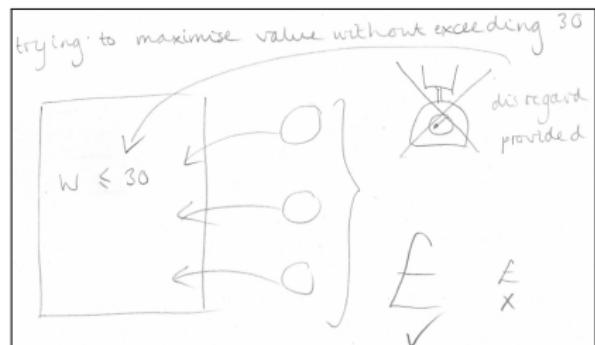
$$11 > 9$$

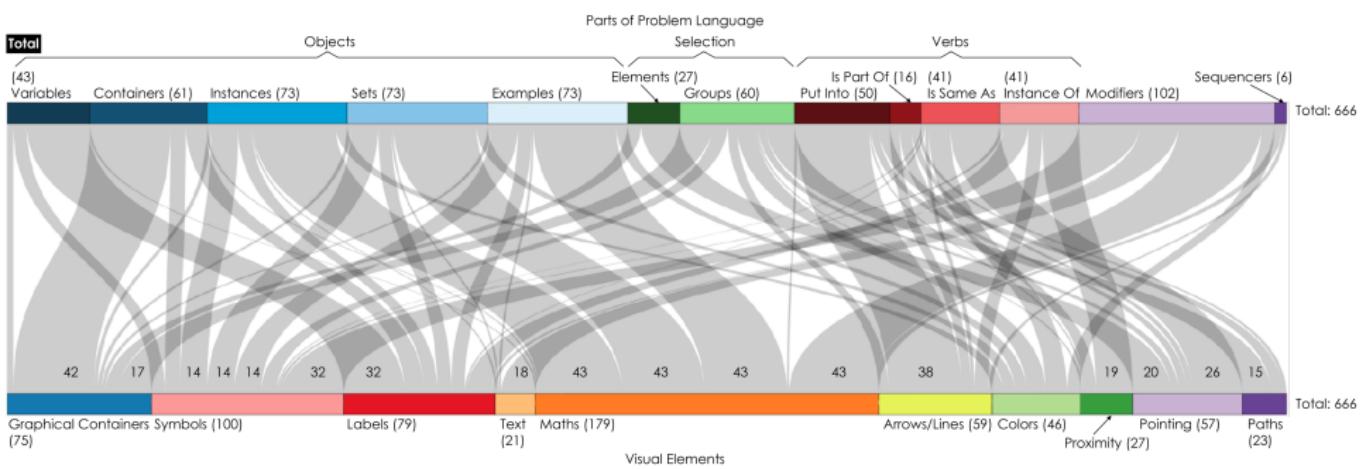
$$10 > 9$$

Magic Square

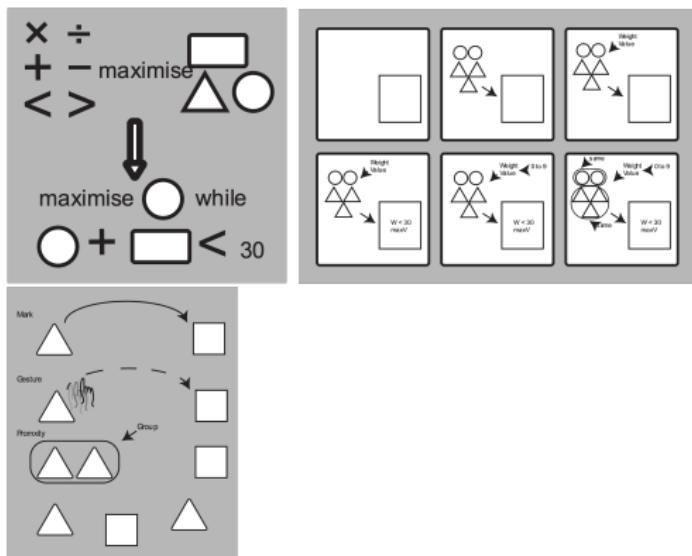



$$a_1 = \boxed{1}$$
$$a_2 = \boxed{2}$$
$$a_3 = \boxed{3}$$





$$y_1 = a_1 + a_2 + a_3$$
$$x_1 =$$

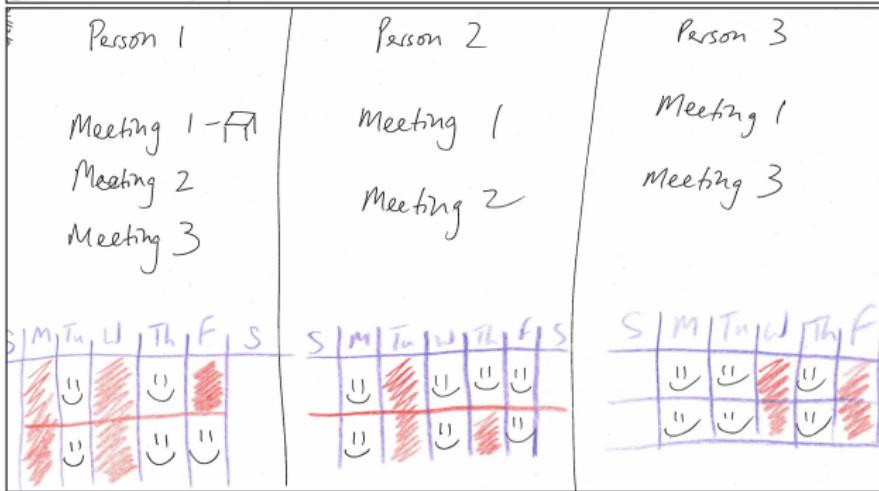
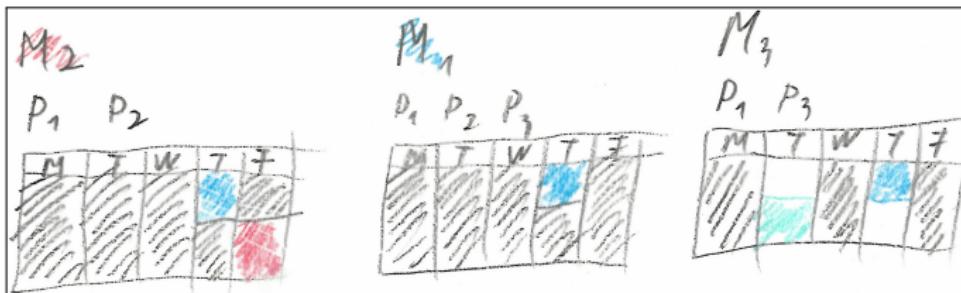


$$x_1 = x_2 = x_3 = y_1 = y_2 = y_3 = z_1 = z_2$$


$$y_1 = 1 + 2 + 3$$
$$\Rightarrow \boxed{6} \Rightarrow y_2 = 4 + 5 +$$

Representation

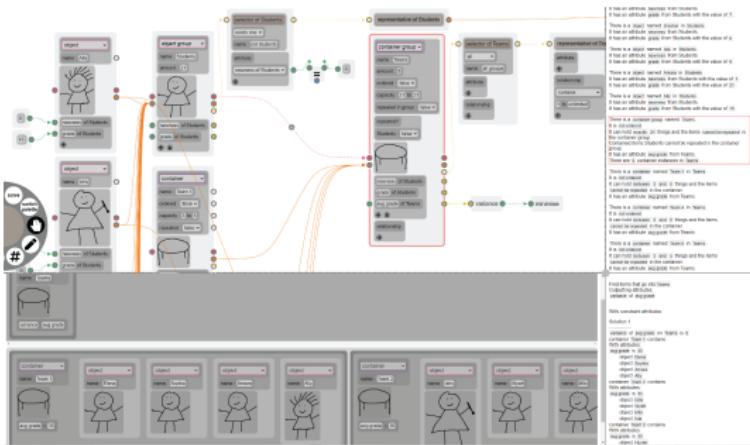

- 1 Use a hybrid of math, text and visuals
- 2 Support the process
- 3 Leverage implicit information that the user produces



Solving

- Understand the human solving processes
- Categorise solving strategies
- Identify generally applicable strategies

3	7	9	6	2
2	6	3	7	
9	9	2	8	6
	6	3	4	5
7	2	3	9	6
9	7	2	8	1
8	3	8	9	1
5	2	5	3	2
9	2	8	7	3

$$\begin{aligned}
 D + E &= Y + 10 \times C_1 \\
 C_1 + N + R &= E + 10 \times C_2 \\
 C_2 + E + O &= N + 10 \times C_3 \\
 C_3 + S + M &= O + 10 \times C_4 \\
 C_4 &= M
 \end{aligned}$$


Solving

- 1 Non-experts are not aware of the implications of the problem representation
- 2 Visualisation of solving strategies has an impact on the understanding of a solving step
- 3 General belief that constraint problems are solved strategically

What have we learned?

We have an intuition for how

- to improve CP languages
- to visualise solvers
- people "learn" how to solve

Where to go next?

- Programming/modelling analysis
- Specialised studies
- Studies with a wider participant pool

What?

- Be conscious of the human element of your applications and tools
- Be conscious of how to explain/teach CP
- Inspect the human aspects of your work
- Think beyond your own experience
- Talk to us for collaborative studies

University of
St Andrews

University
of Victoria

UNIVERSITY
of York

Thank you!

✉ rh347@st-andrews.ac.uk

✉ xz32@st-andrews.ac.uk

✉ ozgur.akgun@st-andrews.ac.uk

✉ nacente@uvic.ca

✉ peter.nightingale@york.ac.uk